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Abstract— We propose a lightweight and ground-optimized
lidar odometry and mapping method, LeGO-LOAM, for real-
time six degree-of-freedom pose estimation with ground ve-
hicles. LeGO-LOAM is lightweight, as it can achieve real-
time pose estimation on a low-power embedded system. LeGO-
LOAM is ground-optimized, as it leverages the presence of a
ground plane in its segmentation and optimization steps. We
first apply point cloud segmentation to filter out noise, and
feature extraction to obtain distinctive planar and edge features.
A two-step Levenberg-Marquardt optimization method then
uses the planar and edge features to solve different components
of the six degree-of-freedom transformation across consecutive
scans. We compare the performance of LeGO-LOAM with a
state-of-the-art method, LOAM, using datasets gathered from
variable-terrain environments with ground vehicles, and show
that LeGO-LOAM achieves similar or better accuracy with re-
duced computational expense. We also integrate LeGO-LOAM
into a SLAM framework to eliminate the pose estimation error
caused by drift, which is tested using the KITTI dataset.

I. INTRODUCTION

Among the capabilities of an intelligent robot, map-
building and state estimation are among the most fundamen-
tal prerequisites. Great efforts have been devoted to achiev-
ing real-time 6 degree-of-freedom simultaneous localization
and mapping (SLAM) with vision-based and lidar-based
methods. Although vision-based methods have advantages
in loop-closure detection, their sensitivity to illumination and
viewpoint change may make such capabilities unreliable if
used as the sole navigation sensor. On the other hand, lidar-
based methods will function even at night, and the high
resolution of many 3D lidars permits the capture of the
fine details of an environment at long ranges, over a wide
aperture. Therefore, this paper focuses on using 3D lidar to
support real-time state estimation and mapping.

The typical approach for finding the transformation be-
tween two lidar scans is iterative closest point (ICP) [1]. By
finding correspondences at a point-wise level, ICP aligns two
sets of points iteratively until stopping criteria are satisfied.
When the scans include large quantities of points, ICP may
suffer from prohibitive computational cost. Many variants
of ICP have been proposed to improve its efficiency and
accuracy [2]. [3] introduces a point-to-plane ICP variant that
matches points to local planar patches. Generalized-ICP [4]
proposes a method that matches local planar patches from
both scans. In addition, several ICP variants have leveraged
parallel computing for improved efficiency [5]–[8].
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Feature-based matching methods are attracting more at-
tention, as they require less computational resources by ex-
tracting representative features from the environment. These
features should be suitable for effective matching and invari-
ant of point-of-view. Many detectors, such as Point Feature
Histograms (PFH) [9] and Viewpoint Feature Histograms
(VFH) [10], have been proposed for extracting such features
from point clouds using simple and efficient techniques. A
method for extracting general-purpose features from point
clouds using a Kanade-Tomasi corner detector is introduced
in [11]. A framework for extracting line and plane features
from dense point clouds is discussed in [12].

Many algorithms that use features for point cloud reg-
istration have also been proposed. [13] and [14] present a
keypoint selection algorithm that performs point curvature
calculations in a local cluster. The selected keypoints are
then used to perform matching and place recognition. By
projecting a point cloud onto a range image and analyzing
the second derivative of the depth values, [15] selects features
from points that have high curvature for matching and
place recognition. Assuming the environment is composed
of planes, a plane-based registration algorithm is proposed
in [16]. An outdoor environment, e.g., a forest, may limit the
application of such a method. A collar line segments (CLS)
method, which is especially designed for Velodyne lidar, is
presented in [17]. CLS randomly generates lines using points
from two consecutive “rings” of a scan. Thus two line clouds
are generated and used for registration. However, this method
suffers from challenges arising from the random generation
of lines. A segmentation-based registration algorithm is pro-
posed in [18]. SegMatch first applies segmentation to a point
cloud. Then a feature vector is calculated for each segment
based on its eigenvalues and shape histograms. A random
forest is used to match the segments from two scans. Though
this method can be used for online pose estimation, it can
only provide localization updates at about 1Hz.

A low-drift and real-time lidar odometry and mapping
(LOAM) method is proposed in [19] and [20]. LOAM
performs point feature to edge/plane scan-matching to find
correspondences between scans. Features are extracted by
calculating the roughness of a point in its local region.
The points with high roughness values are selected as edge
features. Similarly, the points with low roughness values
are designated planar features. Real-time performance is
achieved by novelly dividing the estimation problem across
two individual algorithms. One algorithm runs at high fre-
quency and estimates sensor velocity at low accuracy. The
other algorithm runs at low frequency but returns high-



accuracy motion estimation. The two estimates are fused
together to produce a single motion estimate at both high
frequency and high accuracy. LOAM’s resulting accuracy is
the best achieved by a lidar-only estimation method on the
KITTI odometry benchmark site [21].

In this work, we pursue reliable, real-time six degree-
of-freedom pose estimation for ground vehicles equipped
with 3D lidar, in a manner that is amenable to efficient
implementation on a small-scale embedded system. Such
a task is non-trivial for several reasons. Many unmanned
ground vehicles (UGVs) do not have suspensions or powerful
computational units due to their limited size. Non-smooth
motion is frequently encountered by small UGVs driving on
variable terrain, and as a result, the acquired data is often
distorted. Reliable feature correspondences are also hard to
find between two consecutive scans due to large motions
with limited overlap. Besides that, the large quantities of
points received from a 3D lidar poses a challenge to real-time
processing using limited on-board computational resources.

When we implement LOAM for such tasks, we can obtain
low-drift motion estimation when a UGV is operated with
smooth motion admist stable features, and supported by suf-
ficient computational resources. However, the performance
of LOAM deteriorates when resources are limited. Due to
the need to compute the roughness of every point in a dense
3D point cloud, the update frequency of feature extraction on
a lightweight embedded system cannot always keep up with
the sensor update frequency. Operation of UGVs in noisy
environments also poses challenges for LOAM. Since the
mounting position of a lidar is often close to the ground on
a small UGV, sensor noise from the ground may be a constant
presence. For example, range returns from grass may result
in high roughness values. As a consequence, unreliable edge
features may be extracted from these points. Similarly, edge
or planar features may also be extracted from points returned
from tree leaves. Such features are usually not reliable for
scan-matching, as the same grass blade or leaf may not be
seen in two consecutive scans. Using these features may lead
to inaccurate registration and large drift.

We therefore propose a lightweight and ground-optimized
LOAM (LeGO-LOAM) for pose estimation of UGVs in
complex environments with variable terrain. LeGO-LOAM
is lightweight, as real-time pose estimation and mapping
can be achieved on an embedded system. Point cloud seg-
mentation is performed to discard points that may represent
unreliable features after ground separation. LeGO-LOAM
is also ground-optimized, as we introduce a two-step opti-
mization for pose estimation. Planar features extracted from
the ground are used to obtain [tz, θroll, θpitch] during the
first step. In the second step, the rest of the transformation
[tx, ty, θyaw] is obtained by matching edge features extracted
from the segmented point cloud. We also integrate the ability
to perform loop closures to correct motion estimation drift.
The rest of the paper is organized as follows. Section II
introduces the hardware used for experiments. Section III
describes the proposed method in detail. Section IV presents
a set of experiments over a variety of outdoor environments.

(a) Jackal UGV (b) System overview

Fig. 1: Hardware and system overview of LeGO-LOAM.

II. SYSTEM HARDWARE

The framework proposed in this paper is validated using
datasets gathered from Velodyne VLP-16 and HDL-64E 3D
lidars. The VLP-16 measurement range is up to 100m with
an accuracy of ± 3cm. It has a vertical field of view (FOV)
of 30◦(±15◦) and a horizontal FOV of 360◦. The 16-channel
sensor provides a vertical angular resolution of 2◦. The
horizontal angular resolution varies from 0.1◦ to 0.4◦ based
on the rotation rate. Throughout the paper, we choose a scan
rate of 10Hz, which provides a horizontal angular resolution
of 0.2◦. The HDL-64E (explored in this work via the KITTI
dataset) also has a horizontal FOV of 360◦ but 48 more
channels. The vertical FOV of the HDL-64E is 26.9◦.

The UGV used in this paper is the Clearpath Jackal. Pow-
ered by a 270 Watt hour Lithium battery, it has a maximum
speed of 2.0m/s and maximum payload of 20kg. The Jackal
is also equipped with a low-cost inertial measurement unit
(IMU), the CH Robotics UM6 Orientation Sensor.

The proposed framework is validated on two computers:
an Nvidia Jetson TX2 and a laptop with a 2.5GHz i7-
4710MQ CPU. The Jetson TX2 is an embedded computing
device that is equipped with an ARM Cortex-A57 CPU. The
laptop CPU was selected to match the computing hardware
used in [19] and [20]. The experiments shown in this paper
use the CPUs of these systems only.

III. LIGHTWEIGHT LIDAR ODOMETRY AND MAPPING

A. System Overview

An overview of the proposed framework is shown in
Figure 1. The system receives input from a 3D lidar and
outputs 6 DOF pose estimation. The overall system is divided
into five modules. The first, segmentation, takes a single
scan’s point cloud and projects it onto a range image for
segmentation. The segmented point cloud is then sent to
the feature extraction module. Then, lidar odometry uses
features extracted from the previous module to find the
transformation relating consecutive scans. The features are
further processed in lidar mapping, which registers them to
a global point cloud map. At last, the transform integration
module fuses the pose estimation results from lidar odometry
and lidar mapping and outputs the final pose estimate. The
proposed system seeks improved efficiency and accuracy for
ground vehicles, with respect to the original, generalized
LOAM framework of [19] and [20]. The details of these
modules are introduced below.



Fig. 2: Feature extraction process for a scan in noisy environment.
The original point cloud is shown in (a). In (b), the red points are
labeled as ground points. The rest of the points are the points that
remain after segmentation. In (c), blue and yellow points indicate
edge and planar features in Fe and Fp. In (d), the green and pink
points represent edge and planar features in Fe and Fp respectively.

B. Segmentation

Let Pt = {p1, p2, ..., pn} be the point cloud acquired at
time t, where pi is a point in Pt. Pt is first projected onto
a range image. The resolution of the projected range image
is 1800 by 16, since the VLP-16 has horizontal and vertical
angular resolution of 0.2◦ and 2◦ respectively. Each valid
point pi in Pt is now represented by a unique pixel in the
range image. The range value ri that is associated with pi
represents the Euclidean distance from the corresponding
point pi to the sensor. Since sloped terrain is common in
many environments, we do not assume the ground is flat.
A column-wise evaluation of the range image, which can
be viewed as ground plane estimation [22], is conducted
for ground point extraction before segmentation. After this
process, points that may represent the ground are labeled as
ground points and not used for segmentation.

Then, an image-based segmentation method [23] is applied
to the range image to group points into many clusters. Points
from the same cluster are assigned a unique label. Note that
the ground points are a special type of cluster. Applying
segmentation to the point cloud can improve processing
efficiency and feature extraction accuracy. Assuming a robot
operates in a noisy environment, small objects, e.g., tree
leaves, may form trivial and unreliable features, as the same
leaf is unlikely to be seen in two consecutive scans. In
order to perform fast and reliable feature extraction using
the segmented point cloud, we omit the clusters that have
fewer than 30 points. A visualization of a point cloud before
and after segmentation is shown in Fig. 2. The original
point cloud includes many points, which are obtained from
surrounding vegetation that may yield unreliable features.

After this process, only the points (Fig. 2(b)) that may
represent large objects, e.g., tree trunks, and ground points
are preserved for further processing. At the same time, only
these points are saved in the range image. We also obtain

Fig. 3: Two-step optimization for the lidar odometry module.
[tz, θroll, θpitch] is first obtained by matching the planar features
extracted from ground points. [tx, ty, θyaw] are then estimated using
the edge features extracted from segmented points while applying
[tz, θroll, θpitch] as constraints.

three properties for each point: (1) its label as a ground point
or segmented point, (2) its column and row index in the
range image, and (3) its range value. These properties will
be utilized in the following modules.

C. Feature Extraction

The feature extraction process is similar to the method
used in [20]. However, instead of extracting features from
raw point clouds, we extract features from ground points and
segmented points. Let S be the set of continuous points of
pi from the same row of the range image. Half of the points
in S are on either side of pi. In this paper, we set |S| to 10.
Using the range values computed during segmentation, we
can evaluate the roughness of point pi in S,

c =
1

|S| · ‖ri‖
‖ Σ

j∈S,j 6=i
(rj − ri)‖. (1)

To evenly extract features from all directions, we divide
the range image horizontally into several equal sub-images.
Then we sort the points in each row of the sub-image based
on their roughness values c. Similar to LOAM, we use a
threshold cth to distinguish different types of features. We
call the points with c larger than cth edge features, and the
points with c smaller than cth planar features. Then nFe

edge
feature points with the maximum c, which do not belong to
the ground, are selected from each row in the sub-image.
nFp

planar feature points with the minimum c, which may
be labeled as either ground or segmented points, are selected
in the same way. Let Fe and Fp be the set of all edge
and planar features from all sub-images. These features are
visualized in Fig. 2(d). We then extract nFe

edge features
with the maximum c, which do not belong to the ground,
from each row in the sub-image. Similarly, we extract nFp

planar features with the minimum c, which must be ground
points, from each row in the sub-image. Let Fe and Fp be the
set of all edge and planar features from this process. Here,
we have Fe ⊂ Fe and Fp ⊂ Fp. Features in Fe and Fp are
shown in Fig. 2(c). In this paper, we divide the 360◦ range
image into 6 sub-images. Each sub-image has a resolution
of 300 by 16. nFe , nFp , nFe and nFp are chosen to be 2, 4,
40 and 80 respectively.



D. Lidar Odometry

The lidar odometry module estimates the sensor motion
between two consecutive scans. The transformation between
two scans is found by performing point-to-edge and point-
to-plane scan-matching. In other words, we need to find
the corresponding features for points in F t

e and F t
p from

feature sets Ft−1
e and Ft−1

p of the previous scan. For the
sake of brevity, the detailed procedures of finding these
correspondences can be found in [20].

However, we note that a few changes can be made to
improve feature matching accuracy and efficiency:

1) Label Matching: Since each feature in F t
e and F t

p

is encoded with its label after segmentation, we only find
correspondences that have the same label from Ft−1

e and
Ft−1
p . For planar features in F t

p , only points that are labeled
as ground points in Ft−1

p are used for finding a planar
patch as the correspondence. For an edge feature in F t

e , its
corresponding edge line is found in the Ft−1

e from segmented
clusters. Finding the correspondences in this way can help
improve the matching accuracy. In other words, the matching
correspondences for the same object are more likely to be
found between two scans. This process also narrows down
the potential candidates for correspondences.

2) Two-step L-M Optimization: In [20], a series of non-
linear expressions for the distances between the edge and
planar feature points from the current scan and their corre-
spondences from the previous scan are compiled into a single
comprehensive distance vector. The Levenberg-Marquardt
(L-M) method is applied to find the minimum-distance
transformation between the two consecutive scans.

We introduce a two-step L-M optimization method here.
The optimal transformation T is found in two steps: (1)
[tz, θroll, θpitch] are estimated by matching the planar fea-
tures in F t

p and their correspondences in Ft−1
p , (2) the

remaining [tx, ty, θyaw] are then estimated using the edge
features in F t

e and their correspondences in Ft−1
e while

using [tz, θroll, θpitch] as constraints. It should be noted that
though [tx, ty, θyaw] can also be obtained from the first
optimization step, they are less accurate and not used for
the second step. Finally, the 6D transformation between two
consecutive scans is found by fusing [tz, θroll, θpitch] and
[tx, ty, θyaw]. By using the proposed two-step optimization
method, we observe that similar accuracy can be achieved
while computation time is reduced by about 35% (Table III).

E. Lidar Mapping

The lidar mapping module matches features in {Ft
e, Ft

p}
to a surrounding point cloud map Q

t−1
to further refine the

pose transformation, but runs at a lower frequency. Then
the L-M method is used here again to obtain the final
transformation. We refer the reader to the description from
[20] for the detailed matching and optimization procedure.

The main difference in LeGO-LOAM is how the final
point cloud map is stored. Instead of saving a single point
cloud map, we save each individual feature set {Ft

e, Ft
p}. Let

M t−1 = {{F1
e,F1

p}, ..., {Ft−1
e ,Ft−1

p }} be the set that saves

all previous feature sets. Each feature set in M t−1 is also
associated with the pose of the sensor when the scan is taken.
Then Q

t−1
can be obtained from M t−1 in two ways.

In the first approach, Q
t−1

is obtained by choosing the
feature sets that are in the field of view of the sensor. For
simplicity, we can choose the feature sets whose sensor poses
are within 100m of the current position of the sensor. The
chosen feature sets are then transformed and fused into a
single surrounding map Q

t−1
. This map selection technique

is similar to the method used in [20].
We can also integrate pose-graph SLAM into LeGO-

LOAM. The sensor pose of each feature set can be mod-
eled as a node in a pose graph. Feature set {Ft

e,Ft
p} can

be viewed as a sensor measurement of this node. Since
the pose estimation drift of the lidar mapping module is
very low, we can assume that there is no drift over a
short period of time. In this way, Q

t−1
can be formed

by choosing a recent group of feature sets, i.e., Q
t−1

=
{{Ft−k

e ,Ft−k
p }, ..., {Ft−1

e ,Ft−1
p }}, where k defines the size

of Q
t−1

. Then, spatial constraints between a new node
and the chosen nodes in Q

t−1
can be added using the

transformations obtained after L-M optimization. We can
further eliminate drift for this module by performing loop
closure detection. In this case, new constraints are added if a
match is found between the current feature set and a previous
feature set using ICP. The estimated pose of the sensor is then
updated by sending the pose graph to an optimization system
such as [24]. Note that only the experiment in Sec. IV(D)
uses this technique to create its surrounding map.

IV. EXPERIMENTS

We now describe a series of experiments to qualitatively
and quantitatively analyze two competing methods, LOAM
and LeGO-LOAM, on two hardware arrangements, a Jetson
TX2 with a Cortex-A57, and a laptop with an i7-4710MQ.
Both algorithms are implemented in C++ and executed using
the robot operating system (ROS) [25] in Ubuntu Linux1.

A. Small-Scale UGV Test

We manually drive the robot in an outdoor environment
that is covered with vegetation. We first show qualitative
comparisons of feature extraction in this environment. Edge
and planar features that are extracted from the same scan
using both methods are shown in Fig. 4. These features
correspond to the {Ft

e,Ft
p} that are sent to the lidar mapping

module in Section III. As is shown in Fig. 4(d), the number
of features from LeGO-LOAM is reduced greatly after point
cloud segmentation. The majority of points that are returned
from tree leaves are discarded, as they are not stable features
across multiple scans. On the other hand, since the points
returned from grass are also very noisy, large roughness
values will be derived after evaluation. As a result, edge
features are unavoidably extracted from these points using

1The code for LeGO-LOAM is available at https://github.com/
RobustFieldAutonomyLab/LeGO-LOAM



Fig. 4: Edge and planar features obtained from two different lidar
odometry and mapping frameworks in an outdoor environment
covered by vegetation. Edge and planar features are colored green
and pink, respectively. The features obtained from LOAM are
shown in (b) and (c). The features obtained from LeGO-LOAM
are shown in (d) and (e). Label (i) indicates a tree, (ii) indicates a
stone wall, and (iii) indicates the robot.

(a) LOAM (b) LeGO-LOAM

Fig. 5: Maps from both LOAM and LeGO-LOAM over the terrain
shown in Fig. 4(a). The trees marked by white arrows in (a)
represent the same tree.

the original LOAM. As is shown in Fig. 4(c), edge features
that are extracted from the ground are often unreliable.

Though we can change the roughness threshold cth for
extracting edge and planar features in LOAM to reduce the
number of features and filter out unstable features from grass
and leaves, we encounter worse results after applying such
changes. For example, we can increase cth to extract more
stable edge features from an environment, but this change
may result in an insufficient number of useful edge features
if the robot enters a relatively clean environment. Similarly,
decreasing cth will also give rise to a lack of useful planar
features when the robot moves from a clean environment to
a noisy environment. Throughout all experiments here, we
use the same cth for both LOAM and LeGO-LOAM.

Now we compare the mapping results from both methods
over the test environment. To mimic a challenging potential
UGV operational scenario, we perform a series of aggressive
yaw maneuvers. Note that both methods are fed an identical
initial translational and rotational guess, which is obtained
from an IMU, throughout all experiments in the paper. The
resulting point cloud map after 60 seconds of operation is

TABLE I: Large-Scale Outdoor Datasets

Experiment Scan
Number

Elevation
Change (m)

Trajectory
Length (km)

1 8077 11 1.09
2 8946 11 1.24
3 20834 19 2.71

shown in Fig. 5. Due to erroneous feature associations caused
by unstable features, the map from LOAM diverges twice
during operation. The three tree trunks that are highlighted by
white arrows in Fig. 5(a) represent the same tree in reality. A
visualization of the full mapping process for both odometry
methods can be found in the video attachment2.

B. Large-Scale UGV Tests

We next perform quantitative comparisons of LOAM and
LeGO-LOAM over three large-scale datasets, which will be
referred to as experiments 1, 2 and 3. The first two were
collected on the Stevens Institute of Technology campus,
with numerous buildings, trees, roads and sidewalks. These
experiments and their environment are illustrated in Fig. 6(a).
Experiment 3 spans a forested hiking trail, which features
trees, asphalt roads and trail paths covered by grass and soil.
The environment in which experiment 3 was performed is
shown in Fig. 8. The details of each experiment are listed in
Table I. To perform a fair comparison, all of the performance
and accuracy results shown for each experiment are averaged
over 10 trials of real-time playback of each dataset.

1) Experiment 1: The first experiment is designed to
show that both LOAM and LeGO-LOAM can achieve low-
drift pose estimation in an urban environment with smooth
motion. We avoid aggressive yaw maneuvers, and we avoid
driving the robot through sparse areas where only a few
stable features can be acquired. The robot is operated on
smooth roads during the whole data logging process. The
initial position of the robot, which is marked in Fig. 6(b), is
on a slope. The robot returns to the same position after 807
seconds of travel with an average speed of 1.35m/s.

To evaluate the pose estimation accuracy of both meth-
ods, we compare the translational and rotational difference
between the final pose and the initial pose. Here, the initial
pose is defined as [0, 0, 0, 0, 0, 0] through all experiments. As
is shown in Table V, both LOAM and LeGO-LOAM achieve
similar low-drift pose estimation over two different hardware
arrangements. The final map from LeGO-LOAM, when run
on a Jetson, is shown in Fig. 6(b).

2) Experiment 2: Though experiment 2 is carried out
in the same environment as experiment 1, its trajectory is
slightly different, driving across a sidewalk that is shown
in Fig. 7(a). This sidewalk represents an environment where
LOAM may often fail. A wall and pillars are on one end
of the sidewalk - the edge and planar features that are
extracted from these structures are stable. The other end of
the sidewalk is an open area covered with noisy objects,
i.e., grass and trees, which will result in unreliable feature
extraction. As a result, LOAM’s pose estimation diverges

2https://youtu.be/O3tz_ftHV48



(a) Satellite image (b) Experiment 1 (c) Experiment 2

Fig. 6: LeGO-LOAM maps from experiments 1 and 2. The color variation in (c) indicates true elevation change. Since the robot’s initial
position in experiment 1 is on a slope, the color variation in (b) does not represent true elevation change.

(a) Satellite image (b) LOAM (c) LeGO-LOAM (d) LOAM (e) LeGO-LOAM

Fig. 7: A scenario where LOAM fails over a sidewalk crossing the Stevens campus in experiment 2 (the leftmost sidewalk in image (a)
above). One end of the sidewalk is supported by features from a nearby building. The other end of the sidewalk is surrounded primarily
by noisy objects, i.e., grass and trees. Without point cloud segmentation, unreliable edge and planar features will be extracted from such
objects. Images (b) and (d) show that LOAM fails after passing over the sidewalk.

Fig. 8: Experiment 3 LeGO-LOAM mapping result.

after driving over this sidewalk (Fig. 7(b) and (d)). LeGO-
LOAM has no such problem as: 1) no edge features are
extracted from ground that is covered by grass, and 2)
noisy sensor readings from tree leaves are filtered out after
segmentation. An accuracy comparison of both methods is
shown in Table V. In this experiment, LeGO-LOAM achieves
higher accuracy than LOAM by an order of magnitude.

3) Experiment 3: The dataset for experiment 3 was logged
from a forested hiking trail, where the UGV was driven at
an average speed of 1.3m/s. The robot returns to the initial
position after 35 minutes of driving. The elevation change in
this environment is about 19 meters. The UGV is driven on
three road surfaces: dirt-covered trails, asphalt, and ground

covered by grass. Representative images of such surfacess
are shown respectively at bottom of Fig. 8. Trees or bushes
are present on at least one side of the road at all times.

We first test LOAM’s accuracy in this environment.
The resulting maps diverge at various locations on both
computers used. The final translational and rotational error
with respect to the UGV’s initial position are 69.40m and
27.38◦ on the Jetson, and 62.11m and 8.50◦ on the laptop.
The resulting trajectories from 10 trials on both hardware
arrangements are shown in Fig. 9(a) and (b).

When LeGO-LOAM is applied to this dataset, the final
relative translational and rotational errors are 13.93m and
7.73◦ on the Jetson, and 14.87m and 7.96◦ on the laptop.
The final point cloud map from LeGO-LOAM on the Jetson
is shown in Fig. 8 overlaid atop a satellite image. A local
map, which is enlarged at the center of Fig. 8, shows that the
point cloud map from LeGO-LOAM matches well with three
trees visible in the open. High consistency is shown among
all paths obtained from LeGO-LOAM on both computers.
Fig. 9(c) and (d) show ten trials run on each computer.

C. Benchmarking Results

1) Feature number comparison: We show a comparison
of feature extraction across both methods in Table II. The
feature content of each scan is averaged over 10 trials for
each dataset. After point cloud segmentation, the number
of features that need to be processed by LeGO-LOAM is
reduced by at least 29%, 40%, 68% and 72% for sets Fe,
Fp, Fe and Fp respectively.



(a) LOAM on Jetson (b) LOAM on laptop

(c) LeGO-LOAM on Jetson (d) LeGO-LOAM on laptop

Fig. 9: Paths produced by LOAM and LeGO-LOAM across 10
trials, and 2 computers, with the experiment 3 dataset.

TABLE II: Average feature content of a scan after feature extraction

Sc
en

ar
io Edge

Features Fe

Planar
Features Fp

Edge
Features Fe

Planar
Features Fp

LOAM LeGO-
LOAM LOAM LeGO-

LOAM LOAM LeGO-
LOAM LOAM LeGO-

LOAM

1 157 102 323 152 878 253 4849 1319
2 145 102 331 154 798 254 4677 1227
3 174 101 172 103 819 163 6056 1146

2) Iteration number comparison: The results of applying
the proposed two-step L-M optimization method are shown
in Table III. We first apply the original L-M optimization
with LeGO-LOAM, which means that we minimize the
distance function obtained from edge and planar features
together. Then we apply the two-step L-M optimization for
LeGO-LOAM: 1) planar features in Fp are used to obtain
[tz, θroll, θpitch] and 2) edge features in Fe are used to obtain
[tx, ty, θyaw]. The average iteration number when the L-M
method terminates after processing one scan is logged for
comparison. When two-step optimization is used, the step-1
optimization is finished in 2 iterations in experiments 1 and
2. Though the iteration count of the step-2 optimization is
similar to the quantity of the original L-M method, fewer
features are processed. As a result, the runtime for lidar
odometry is reduced by 34% to 48% after using two-step
L-M optimization. The runtime for two-step optimization is
shown in Table IV.

3) Runtime comparison: The runtime for each module of
LOAM and LeGO-LOAM over two computers is shown in
Table IV. Using the proposed framework, the runtime of the
feature extraction and lidar odometry modules are reduced
by one order of magnitude in LeGO-LOAM. Note that the
runtime of these two modules in LOAM is more than 100ms
on a Jetson. As a result, many scans are skipped because real-
time performance is not achieved by LOAM on an embedded
system. The runtime of lidar mapping is also reduced by at
least 60% when LeGO-LOAM is used.

4) Pose error comparison: By setting the initial pose to
[0, 0, 0, 0, 0, 0] in all experiments, we compute the relative
pose estimation error by comparing the final pose with the

TABLE III: Iteration number comparison for LeGO-LOAM

Scenario Original Opt. Two-step Opt.
Iter. Num. Time Step 1

Iter. Num
Step 2

Iter. Num

Je
ts

on 1 16.6 34.5 1.9 17.5
2 15.7 32.9 1.7 16.7
3 20.0 27.7 4.7 18.9

i7

1 17.3 13.1 1.8 18.2
2 16.5 12.3 1.6 17.5
3 20.5 10.4 4.7 19.8

TABLE IV: Runtime of modules for processing one scan (ms)

Scenario Segmentation Extraction Odometry Mapping
LOAM LeGO-

LOAM LOAM LeGO-
LOAM LOAM LeGO-

LOAM LOAM LeGO-
LOAM

Je
ts

on 1 N/A 29.3 105.1 9.1 133.4 19.3 702.3 266.7
2 N/A 29.9 106.7 9.9 124.5 18.6 793.6 278.2
3 N/A 36.8 104.6 6.1 122.1 18.1 850.9 253.3

i7

1 N/A 16.7 50.4 4.0 69.8 6.8 289.4 108.2
2 N/A 17.0 49.3 4.4 66.5 6.5 330.5 116.7
3 N/A 20.0 48.5 2.3 63.0 6.1 344.9 101.7

initial pose. Rotational error (in degrees) and translational
error (in meters) are listed in Table V for both methods over
both computers. By using the proposed framework, LeGO-
LOAM can achieve comparable or better position estimation
accuracy with less computation time.

D. Loop Closure Test using KITTI Dataset

Our final experiment applies LeGO-LOAM to the KITTI
dataset [21]. Since the tests of LOAM over the KITTI
datasets in [20] run at 10% of the real-time speed, we
only explore LeGO-LOAM and its potential for real-time
applications with embedded systems, where the length of
travel is significant enough to require a full SLAM solution.
The results from LeGO-LOAM on a Jetson using sequence
00 are shown in Fig. 10. To achieve real-time performance
on the Jetson, we downsample the scan from the HDL-64E
to the same range image that is used in Section III for the
VLP-16. In other words, 75% of the points of each scan
are omitted before processing. ICP is used here for adding
constraints between nodes in the pose graph. The graph
is then optimized using iSAM2 [24]. At last, we use the
optimized graph to correct the sensor pose and map. More
loop closure tests can be found in the video attachment.

V. CONCLUSIONS AND DISCUSSION

We have proposed LeGO-LOAM, a lightweight and
ground-optimized lidar odometry and mapping method, for
performing real-time pose estimation of UGVs in complex
environments. LeGO-LOAM is lightweight, as it can be used
on an embedded system and achieve real-time performance.
LeGO-LOAM is also ground-optimized, leveraging ground
separation, point cloud segmentation, and improved L-M
optimization. Valueless points that may represent unreliable
features are filtered out in this process. The two-step L-M
optimization computes different components of a pose trans-
formation separately. The proposed method is evaluated on
a series of UGV datasets gathered in outdoor environments.
The results show that LeGO-LOAM can achieve similar
or better accuracy when compared with the state-of-the-art



TABLE V: Relative pose estimation error when returning to start

Scenario Method Roll Pitch Yaw Total
Rot.(◦) X Y Z Total

Trans.(m)

Je
ts

on

1 LOAM 1.16 2.63 2.5 3.81 1.33 2.91 0.43 3.23
LeGO-LOAM 0.46 0.91 1.98 2.23 0.12 0.07 1.26 1.27

2 LOAM 7.05 5.06 9.4 12.80 7.71 6.31 4.32 10.86
LeGO-LOAM 0.61 0.70 0.32 0.99 0.04 0.10 0.34 0.36

3 LOAM 7.55 3.20 26.12 27.38 34.61 56.19 21.46 69.40
LeGO-LOAM 4.62 5.45 2.95 7.73 5.35 7.95 10.11 13.93

i7

1 LOAM 0.28 1.98 1.74 2.65 0.39 0.03 0.21 0.44
LeGO-LOAM 0.33 0.17 2.06 2.09 0.03 0.02 0.22 0.22

2 LOAM 21.49 4.86 4.34 22.46 1.39 2.59 11.63 11.99
LeGO-LOAM 0.18 0.85 0.64 1.08 0.04 0.12 0.04 0.14

3 LOAM 6.27 3.08 4.83 8.50 16.84 58.81 10.74 62.11
LeGO-LOAM 4.57 5.39 3.68 7.96 6.69 7.79 10.76 14.87

(a) (b)

Fig. 10: LeGO-LOAM, KITTI dataset loop closure test, using the
Jetson. Color variation indicates elevation change.

algorithm LOAM. The computation time of LeGO-LOAM
is also greatly reduced. Future work involves exploring its
application to other classes of vehicles.

Though LeGO-LOAM is especially optimized for pose es-
timation on ground vehicles, its application could potentially
be extended to other vehicles, e.g., unmanned aerial vehicles
(UAVs), with minor changes. When applying LeGO-LOAM
to a UAV, we would not assume the ground is present in
a scan. A scan’s point cloud would be segmented without
ground extraction. The feature extraction process would be
the same for the selection of Fe, Fe and Fp. Instead of
extracting planar features for Fp from points that are labeled
as ground points, the features in Fp would be selected from
all segmented points. Then the original L-M method would
be used to obtain the transformation between two scans
instead of using the two-step optimization method. Though
the computation time will increase after these changes,
LeGO-LOAM is still efficient, as a large number of points are
omitted in noisy outdoor environments after segmentation.
The accuracy of the estimated feature correspondences may
improve, as they benefit from segmentation. In addition, the
ability to perform loop closures with LeGO-LOAM online
makes it a useful tool for long-duration navigation tasks.
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