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Abstract— We study the ambiguous data association problem
confronting simultaneous localization and mapping (SLAM),
specifically for the autonomous exploration of environments
lacking rich features. In such environments, a single false
positive assignment might lead to catastrophic failure, which
even robust back-ends may be unable to resolve. Inspired by
multiple hypothesis tracking, we present a novel approach to
effectively manage multiple hypotheses (MH) of data association
inherited from traditional joint compatibility branch and bound
(JCBB), which entails the generation, ordering and elimination
of hypotheses. We analyze the performance of MHJCBB in
two particular situations, one applying it to SLAM over a
predefined trajectory and the other showing its applicability
in exploring unknown environments. Statistical results demon-
strate that MHJCBB’s maintenance of diverse hypotheses under
ambiguous conditions significantly improves map accuracy.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has been
applied successfully for state estimation and map-building
with data collected on various sensing platforms. Although
accurate and robust solutions have been proposed to tackle
SLAM problems using feature-rich sensors, for example
monocular SLAM (ORB-SLAM [1]) and lidar odometry
(LOAM [2]), it is still a key challenge for an autonomous
vehicle to manage the quality of its state estimation and map
in environments with sparse features and severe disturbances,
e.g. in unknown subsea environments [3]. A hurdle remains
in the data association, or the front-end of SLAM, which is
responsible for recognizing features that have been observed
before. A lack of redundancy of features combined with
uncertainty caused by odometry drift makes it difficult to
detect the correct loop closure, thus leading to errors.

Recently, the ambiguity in data association has been
addressed by numerous robust back-ends. In [4], dynamic
covariance scaling (DCS) was introduced to remove outliers
in a factor graph generated by imperfect front-ends. Simi-
larly, given a set of odometry and loop-closing constraints,
the RRR algorithm ([5]) is able to correct loop closures
by performing a consistency check on clustered constraints.
A generalized graph SLAM was proposed in [6], where
ambiguous data associations are represented as mixtures of
Gaussian constraints, and a generalized prefilter is used to
resolve ambiguous graphs before graph optimization.

However, the above solutions all rely on front-ends that
are capable of detecting global associations. Here global
associations correspond to mappings from measurements to
existing features far from the current pose, and as a result,
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a robust back-end can delete outliers and recover correct
associations despite a robot incurring critical drift from an
odometry-based trajectory estimate. While this is feasible
for ground vehicles equipped with laser rangefinders or
cameras (e.g. using a bag-of-words model), it is generally
hard for applications under sparse and featureless conditions.
A workaround solution in semantic SLAM was proposed
[7], where the geometric features are endowed with semantic
labels, reducing the quantity of incorrect associations.

Representing a robot’s state using a multi-modal probabil-
ity distribution has also been used to manage data association
ambiguity. Using particle filters, uncertain data associations
are naturally handled by assigning each particle different
measurement pairings [8]. In addition, multi-modal loop-
closures may be incorporated into a factor graph, and non-
parametric belief propagation is applied to achieve multi-
ple hypothesis inference [9]. However, computation is pro-
hibitive for large-scale problems. In the target tracking com-
munity, maintaining multiple association hypotheses over
time is used in multiple hypothesis tracking (MHT) [10]. Our
algorithm shares the same spirit with MHT, except in SLAM,
the vehicle is moving rather than independent objects.

Failure to secure state estimation against ambiguous data
association is also a major concern for decision-making in
autonomous navigation. A corrupted map generated by incor-
rect loop-closure proposals will pose a threat for navigation.
Provided multiple hypotheses of poses (e.g. mixtures of
Gaussians), active planning strategies in perceptual aliasing
environments have been discussed in [11], [12].

In this paper, we provide a multiple hypothesis joint
compatibility branch and bound (MHJCBB) solution for
SLAM subject to ambiguity in data association, and we
apply it to an autonomous exploration framework. Based
on ideas shared with tracking algorithms, we hold off de-
cisive associations until unlikely hypotheses can be safely
deleted after acquiring sufficient re-observation. We manage
limited numbers of hypotheses by performing expansion
and elimination based on a designated optimality ordering,
and a set of rules for hypothesis elimination. Furthermore,
instead of actively choosing actions to disambiguate multiple
hypotheses, our proposal is to minimize map uncertainty
during exploration. We show that MHJCBB can substantially
mitigate data association ambiguity in SLAM. In the next
section, the data association problem is introduced and
we also give a brief review of JCBB. In Section 3 we
describe the details of MHJCBB’s techniques for hypothesis
and track ordering, hypothesis elimination and an efficient
traversal method. We present its application to autonomous
exploration in Section 4. The proposed algorithm is validated



over simulated environments in Section 5.

II. THE DATA ASSOCIATION PROBLEM

A. Problem Definition

We first give the definition of data association that will be
assumed throughout this paper. A robot navigating through-
out the environment repeatedly collects observations from
a set of m features. Let {z1, ..., zm} be the set of mea-
surements of the landmarks {l1, ..., lm} at state x. The data
association problem is to determine the hypothesis H ,
{j1, ..., jm}, each of which associates one measurement zi
with one non-repeated landmark lji . A measurement from
a new landmark, or a null-pairing, is denoted as ji = 0.
Subsequently, the back-end of SLAM updates the system’s
estimate of the robot state and landmark locations, incorpo-
rating this set of new measurements.

The selection criterion is defined by the Mahalanobis
distance between actual measurements and predicted mea-
surements given a noisy observation model. Mathematically,
the joint measurement model under hypothesis H is

zH = hH(x, lH) + v, (1)

where hH , [h1ji , ...,hmjm ]T is the collection of indepen-
dent measurement models with zero-mean Gaussian noise
v ∼ N (0,RH), and lH , [l1j1 , ..., lmjm ]T is the tested
landmark vector corresponding to zH = {z1, ..., zm}. The
distance d2H is given by

eH = zH − hH(x̂, l̂H) (2)

CH = HHP̂HHT
H + RH (3)

d2H = eTHC−1H eH , (4)

where HH is the Jacobian matrix with respect to robot pose
and landmark positions, and P̂H is the joint covariance of
the estimates. One set of pairings can be accepted, or is
jointly compatible, if the predicted measurements lie in the
validation gate based on the chi-squared distribution,

jc(H) if d2H ≤ χ2
d,α, (5)

where d , dim(hH), and α is the confidence level.

B. Joint Compatibility Branch and Bound

In general, only one “optimal” solution is derived from
data association algorithms, and the problem is challenging
due to the exponential growth of the interpretation tree
[13]. Therefore, obtaining the hypothesis with the minimum
Mahalanobis distance is computationally intractable.

Joint compatibility branch and bound (JCBB) [14] instead
searches for the hypothesis which has the maximum number
of non-null pairings N(H) =

∑m
i=1 Iji 6=0,

H∗ = argmax
H

N(H), s.t. jc(H). (6)

The underlying idea is that the probability of accepting a spu-
rious pairing decreases as we increase the number of jointly
compatible non-null pairings. With this redefinition, the
combinatorial problem becomes tractable using a branch and

bound algorithm. While generating the interpretation tree,
we obtain an incomplete hypothesis Hi , {j1, ..., ji<m} at
every leaf. Given the best H∗ so far, the branching of a
leaf, or insertion of a new pairing Hi+1 = Hi ∪ {ji+1},
is bounded by the lower bound N(H∗). More specifically,
Hi+1 will be considered as a candidate only if N(Hi+1) >
N(H∗)∧ jc(Hi+1). The upper bound of the number of non-
null pairings N can be estimated by assuming all future
independently compatible pairings are also jointly compati-
ble. Thus a good lower bound will significantly reduce the
computation involved in the compatibility check.

III. MULTIPLE HYPOTHESIS JCBB

The myopic pairings derived from JCBB can be inaccu-
rate. For example, when faced with the situation in the top
left of Fig. 4, the solution that greedily incorporates more
pairings with existing landmarks will distort the robot’s state
estimate. The assumptions of JCBB are typically capable
of rejecting false positive pairings with a dense feature
cloud, such as that from a camera image. However, these
assumptions do not hold when dealing with fewer features.
In addition, errors can result from the linearization of priors
[15] and from the fact that maximum a posteriori estimation
converges to local minima.

In this section, we introduce our proposed approach to
addressing the limitations of JCBB. Similar to multiple
hypothesis tracking (MHT) [10], the key idea is to defer
decision-making about data association and ultimately to
pick the association “track” with the maximum number of
non-null pairings. Consequently, the need for interpretation
at a single ambiguous moment is avoided by accumulating
measurements over a longer time horizon.

A. Problem Definition

Let T (t−1) be the hypothesis track associated with mea-
surements Z(t−1) over the trajectory X(t−1),

T (t−1) , {H1, ...,Ht−1},
Z(t−1) , {zH(1) , ..., zH(t−1)},
X(t−1) , {x1, ...,xt−1}.

Here, we use the superscript to indicate a time step and
the subscript for indexing, e.g., T (j)

i means the ith track
at time j. In the notation that follows, the superscript will
occasionally be omitted for the sake of brevity.

We seek to resolve ambiguity by maintaining the K-
best solutions of the data association problem, which are
represented as {T (t−1)

1 , ..., T
(t−1)
k≤K }. Given the latest mea-

surements, the goal is to correctly populate a compact set of
the most probable association histories {T (t)

k } after pruning.
However, without intentionally planning to eliminate ambi-
guity, there is no guarantee that all tracks will eventually be
reduced to one.

B. Hypothesis Orderings

A good measure is needed to select the K-best solutions,
and a common approach is to leverage the joint probability



Fig. 1: A simple example of MHJCBB. The left three panels visualize three tracks resulting from ambiguous data associations
after taking three observations (from top to bottom). At each time instant, tracks diverge, taking into account possible
hypotheses. The formation and ordering of tracks are discussed in Sec. III.B. Redundant hypotheses are screened and the
resulting tracks are pruned to keep the K-best solutions (Sec. III.C).

model [16], or the sum of residual error d2T introduced by
measurement and odometry constraints in its logarithmic
form [17],

d2T =
∑
t

||ft(xt−1,ut−1)− xt||2Qt

+ ||hHt(xt, lHt)− zHt ||2RHt
,

where xt = ft(xt−1,ut) + w is the process model with
zero-mean Gaussian noise w ∼ N (0,Qt). Unlike d2H ,
the posterior residual error d2T associated with a track of
associations is computed after optimization.

However, a small d2T doesn’t necessarily indicate a good
mapping result, because the optimization may easily become
trapped in local minima [18]. For instance, consider two
mapping results produced from the same trajectory (Fig. 2),
using JCBB and using known data associations respectively.
The former result, which is severely distorted, turns out to
have a smaller posterior error. Additionally, a data association
algorithm that assumes all measurements to be from new
landmarks can drive the d2T error to zero.

Therefore, we propose two total orderings for intermediate
hypothesis H and association track T . After new measure-
ments are introduced into the least-squares problem, the first
ordering is used for sorting association tracks. Inspired by
the objective function used in JCBB, an association track is
measured in terms of the total number of non-null pairings
over the entire trajectory,

N(T ) =
∑
t

N(Ht). (7)

Thus, the tracks are sorted in the following way,

Ti < Tj ⇒ N(Ti) < N(Tj) ∨ (8)

N(Ti) = N(Tj) ∧ d2Ti
> d2Tj

.

By maximizing the overall non-null pairings, populating
new landmarks is discouraged. However, tracks that have
false associations are likely to diverge from the correct
trajectory, and so maintaining maximum non-null pairings is
less probable. In the example in Fig. 1, there are three tracks
with N(T1) = 0+3+2, N(T2) = 0+2+2, N(T3) = 0+2+3.

Based on the above definition, we could follow the same
search procedure as in JCBB, using the lower bound com-
puted by N(T ∗(t−1)) +N(H∗(t)), where H∗(t) is generated
from the track T ∗(t−1). However, if we consider a loop-
closure observing existing landmarks, true tracks with even
smaller N(T ) will produce more non-null pairings in the
short-term. Thus, the second ordering is designed by valuing
short-term hypotheses, solely incorporating N(H).

The conventional JCBB method is used to search the
interpretation forest consisting of interpretation trees rooted
at multiple tracks. In the example shown in Fig. 1 at time
t = 2, two hypotheses {H(2)

1 , H
(2)
2 = H

(2)
3 } from T1

are jointly compatible, which consequently form two tracks
{T (2)

1 , T
(2)
2 }. Similarly, at t = 3, one {H(3)

1 } from T
(2)
1

and two {H(3)
2 , H

(3)
3 } from T

(2)
2 split into three tracks

{T (3)
1 , T

(3)
2 , T

(3)
3 }. A priority queue with maximum size K

is maintained to house jointly compatible hypotheses from
any track that could be one of the K-best. The priority is
defined using the following total ordering:

Hi < Hj ⇒ N(Hi) < N(Hj) ∨ (9)

N(Hi) = N(Hj) ∧ d2Hi
> d2Hj

.

In this way, the last entry in the queue serves as the lower
bound while traversing the forest. A hypothesis will be
inserted into the priority queue as long as it is superior to the
lower bound either in the number of non-null pairings or in
the chi-squared distance, both of which are non-decreasing
with respect to node level. It is also worth noting that



until now we do not distinguish hypotheses from different
association tracks, thus the outcome is comprised of the i-th
best Hki from association track Tk.

C. Hypothesis Elimination

Hypotheses and association tracks grow exponentially (due
to the fact that we must perform JCBB over K association
tracks), so poor management of the various hypotheses will
increase the computational burden, and more importantly, it
will neglect correct associations. This happens in situations
where hypotheses with more false positives have occupied
the majority of spots in the priority queue, leaving no space
for correct hypotheses with more true negatives. Thus, we
propose a number of techniques to eliminate unlikely asso-
ciations that fall into two categories: screening and pruning
(similar to concepts in [19]).

Screening refers to eliminating unnecessary branches be-
fore generation. Suppose a jointly compatible hypothesis
is H = {j1 = 1, j2 = 2}. Then, there are three trivial
hypotheses that are also jointly compatible: {j1 = 1, j2 = 0},
{j1 = 0, j2 = 2}, and {j1 = 0, j2 = 0}, which become
redundant if they result in little to no ambiguity during the
ensuing data association. Thus we formulate two screening
rules by examining the posterior estimate as follows:

delete Hki if Hki < Hkj

∧ ||x̂t,Hki
− x̂t,Hkj

)||2P < α1, (Rule 1)

delete Hi if N(Hi) = 0

∧ (∃k (N(Hkj) ≥ 1 ∧ ||x̂t,Hi
− x̂t,Hkj

||2P < α1)),
(Rule 2)

where x̂H is the updated pose estimate and P is the updated
covariance estimate from any of the two hypotheses. It is
worth noting that in practice, we use an extended Kalman
filter (EKF) update step to predict the posterior pose and
covariance estimates after incorporating a new hypothesis
H , instead of performing the full least-squares optimization
that is applied elsewhere. The first rule selectively discards
any hypothesis that is close to a high-ranking hypothesis
derived from the same association track Tk, and the second
rule ignores the all-null hypothesis if the posterior state is in
the proximity of any hypothesis with non-null pairings. Both
rules restrain the addition of new landmarks.

After the generation of hypotheses, pruning is used for the
elimination of redundant tracks, since all states are updated
with new measurements. The rules are as follows:

delete Ti if d2Ti
is an outlier ∨ d2Ti

> α2, (Rule 3)
delete Ti if N(Tj)−N(Ti) > α3, (Rule 4)
delete Ti if Ti < Tj (Rule 5)

∧ (∀n ≤ t (||xn,Ti
− xn,Tj

||2P < α4).

The third and fourth rules delete unlikely tracks with regard
to the chi-squared error and the number of landmarks that
are observed at least twice. However, the fourth pruning

Algorithm 1: MHJCBB

Result: Return best estimates X̂, L̂
Given measurements Z, priors T (1);
for {z(t)i } do

Priority queue PQ← ∅ ordered by Eq. 9;
for MSDBF H

(t)
ki do

if H(t)
ki > PQ.top() and jc(H) then

Delete or insert H(t)
ki to PQ by rules 1-2;

end
end
for H(t)

ki ∈ PQ do
Add {z(t)i }, H

(t)
ki to T (t)

k ;
Optimize states X̂(t)

T
(t)
k

, L̂(t)

T
(t)
k

;

Delete T (t)
k by rules 3-5;

end
end
Return X̂(t)

T
(t)
1

, L̂
(t)

T
(t)
1

with T (t)
1 ordered by Eq. 8;

rule is not executed frequently, considering that the ob-
servation of existing landmarks doesn’t occur until loop-
closure (observing the same landmarks at consecutive poses
usually will not eliminate ambiguity). Therefore, we consider
tracks with many new landmarks to be less probable after a
certain number of re-observations are performed. The fifth
rule inspects the closeness of two estimated trajectories by
calculating the maximum Mahalanobis distance between two
poses at every step, and we consider the track of the highest
order to represent the others in its close proximity.

D. Traversal Order

The branch and bound algorithm relies on the quick
computation of lower bounds such that suboptimal branches
are not expanded. Typically, it is solved by using a depth-
first search (DFS) strategy to obtain one jointly compatible
hypothesis at the leaf node. However, in the context of
multiple hypothesis data association, the K-best solutions
are generally distributed across different “track trees”. Thus
exhaustive traversal of a forest, tree by tree, is less efficient.
In [20], a novel traversal strategy, mixed stacked depth-
breadth first (MSDBF) search, was proposed to speed up
the search for an optimal solution.

Firstly, a non-recursive traversal with stacks replaces
function recursion. After visiting the first leaf, instead of
visiting its siblings, mixed depth-breadth visits the first leaf
traced back to the other children from the root by using
a sequence of stacks (see [20] for implementation details).
In principle, leaves in a tree or in a forest are explored in
parallel. For example, two binary trees with two levels each
will have leaves {l11, l12, l13, l14, l21, l22, l23, l24}, which will be
explored in MSDBF in the order (l11, l

2
1, l

1
3, l

2
3, l

1
2, l

2
2, l

1
4, l

2
4).

In this manner, the number of visited nodes is reduced, and
if the computation time is limited, stopping the search early
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(d) MHJCBB(K = 5): d2T = 291.04

Fig. 2: Mapping examples in a simulated environment (noise
level = 4) using (a) JCBB, (b) known data associations,
and (c-d) MHJCBB(K = 5). JCBB distorts the trajectory
but iSAM2 reports a relatively small error. Tracks using
MHJCBB diverge when the robot revisits its start location,
but they converge to the optimal trajectory after collecting
enough observations. Black: ground truth, green: multiple
estimated trajectories, blue: multiple estimated landmarks
and error ellipses (2 std. deviations). Darker-colored trajec-
tories and landmarks in (c) indicate the favored hypotheses.

has a less detrimental effect on the outcome of MSDBF, as
shown in the experiment to follow.

We describe the MHJCBB data association procedure as a
whole in Algorithm 1. The process proceeds whenever new
measurements arrive by populating association hypotheses
(the first inner loop) and appending them to current tracks
(the second inner loop). The MSDBF search is used to iterate
over leaves in the interpretation tree rooted at its correspond-
ing track, and the search is bounded by the least optimal case
in PQ using hypothesis ordering 9 (or it ignores the bound
if PQ hasn’t reach its capacity). Given a jointly compatible
hypothesis, Rules 1-2 are used to determine whether it will
result in uncertain state estimation. Hypothesis generation is
followed by optimization of the entire trajectory and map
using a smoothing and mapping method, and unnecessary
tracks are removed following Rules 3-5. The algorithm
outputs an estimate selected from the remaining tracks using
“track ordering” per Equation 8.

IV. DATA ASSOCIATION IN AUTONOMOUS EXPLORATION

The purpose of exploration is to autonomously discover
an unknown environment, where the objective guiding ex-
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Fig. 3: Mean landmark error and interpretation forest node
counts (using MHJCBB(10)) are plotted with respect to the
noise level over 50 trials of the example shown in Fig. 2
with randomized landmark locations. MHJCBB effectively
manages errors at low noise levels, and MSDBF reduces
the number of forest nodes visited (IC: total independently
compatible node count, JC: total jointly compatible node
count, Visited: nodes actually visited during the search).

Max Nodes Noise: 1 2 3 4 5

30 DFS -0.03 +0.46 +0.39 +0.40 +0.59
MSDBF -0.04 +0.57 +0.16 +0.12 +0.39

50 DFS -0.02 +0.14 +0.20 +0.19 +0.43
MSDBF -0.04 +0.22 +0.18 +0.03 +0.24

70 DFS +0.03 -0.03 +0.06 +0.19 +0.33
MSDBF -0.03 +0.05 +0.15 +0.12 +0.24

TABLE I: The increase/decrease in landmark error when
limiting the max. number of visited nodes is compared over
different node limits using MHJCBB(K = 10) (baselines
without restricting visited nodes are set to zero). Mixed
depth-breadth first search generally obtains optimal hypothe-
ses faster than depth first search.

ploration is to produce a map of a robot’s surroundings ac-
curately and efficiently. In environments with sparse features
and severe noise, spurious data associations, specifically false
positive ones, can result in catastrophic failure during explo-
ration. A false positive pairing can lead to an overconfident
and divergent estimate of robot pose, which brings about
consequential errors in future data associations.

As shown in Fig. 3(a), map accuracy deteriorates as the
level of additive noise increases. This relationship requires an
exploration algorithm to take localization and map uncertain-
ties into account, and we employ our previous algorithm for
exploration with expectation maximization (EM) [21]. Here,
we briefly introduce the EM exploration algorithm that is
used in concert with MHJCBB data association.

We seek a sequence of actions a to minimize a utility func-
tion composed of action cost C(a) (e.g., distance traveled)
and exploration utility. Unlike entropy-based exploration
frameworks, we seed finely and evenly distributed virtual



landmarks V = {vk} throughout the environment as a prior,
and the discovery of unknown space and the minimization
of uncertainty are successfully combined into one term:

a∗ = argmin
a

U(a) = argmin
a

∑
vk∈V∗

φ(Σvk
)+αC(a). (10)

This exploration approach alternates between an expectation
step and a maximization step. In the E-step, the contents
of the environment are estimated using the accumulated
measurements, and they are represented as an expected
occupancy map. Furthermore, we threshold the map to obtain
the set of landmarks V∗ ⊂ V that includes true landmarks,
and the virtual landmarks that do not represent free space.
Next, in the M-step, the covariance of the landmarks in
V∗ after executing actions Σvk

is predicted by forward-
simulating maximum likelihood measurements. These are
used to minimize an uncertainty criterion φ(Σ) = tr(Σ) over
path candidates generated using a sampling-based planner
(e.g. Rapidly Exploring Random Trees (RRTs)).

In considering multiple map hypotheses resulting from
uncertain data associations, it would be problematic to per-
form exploration using only the favored hypothesis, which
may lead to a distorted and incomplete map. Therefore,
we modify the objective function to combine the individual
utility contributed by different tracks,

a∗ = argmin
a

K∑
k=1

ωkU(a|T (t)
k ). (11)

During planning, only one RRT is constructed, and it is
transformed into the frame at pose x

(t)

T
(t)
k

. A path is favorable
if it leads to greater expected uncertainty reduction of the
virtual landmarks over the weighted combination of tracks.
We have found uniform weights ωk = 1/K to perform best,
where K is the total number of tracks. We have observed
instabilities when instead using K-best tracks with small K.

V. EXPERIMENTS AND RESULTS

We analyze the performance of the proposed multiple
hypothesis JCBB in two simulated scenarios: SLAM given
a predefined trajectory (Figs. 1, 2, and Table 1), and au-
tonomous exploration of unknown environments (Figs. 3-
5). We use the iSAM2 [22] implementation in the GTSAM
library [23] for state estimation, and simulations are built
upon [21]. In describing the parameterizations of MHJCBB
investigated hereafter, we will use the notation MHJCBB(K)
to refer to an implementation of the method that maintains
at most K hypothesis tracks.

A. SLAM Over a Predefined Trajectory

Our simulation of a predefined trajectory employs an
environment with 60 uniformly distributed random point
features (Fig. 2). The robot is equipped with a sensor with a
limited field of view (5m, 120°) that is capable of measuring
the relative range and bearing to a landmark. Zero mean
Gaussian noise is added to both process and measurement
models. The robot is commanded to travel in four square
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Fig. 4: Four representative steps from EM exploration using
our proposed MHJCBB(K = 5) algorithm. The estimated
trajectories (lines) and maps (crosses) correspond to the four
instants along the robot’s trajectory that are marked in the
plot at bottom, which shows the evolving number of tracks.

patterns (15m × 15m). To demonstrate association error,
we gradually multiplied the standard deviation (0.05° for
rotation and bearing measurement, 0.05m for translation and
range measurement) by factors of 1, 2, 3, 4, 5 (this factor is
the “noise level" plotted along the x-axes of Fig. 2). All
methods included 50 trials with different random seeds.

The outcomes across one representative trial are illustrated
in Fig. 2. JCBB generates a misleading map as a result of a
few incorrect data associations, whereas by using MHJCBB,
tracks diverge when ambiguity occurs and converge to
one track as soon as the robot observes enough existing
landmarks. The average performance is shown in Fig. 3
by analyzing root-mean-square error with respect to true
landmark positions. Given a mapping from ground truth to
landmark estimates (li → zj → l̂k), we define L̂(li) =
{̂lk|li → · → l̂k} to be the set of estimates corresponding to
the same landmark. Then we calculate the error as follows,

RMSE(L̂) =

√
1

|L|
∑
li∈L

MSE(li) (12)

MSE(li) =
1

|L̂(li)|

∑
l̂k∈L̂(li)

||li − l̂k||22. (13)

It is clear that landmark error rises dramatically as we
increase the noise level, and our proposed method recovers
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Fig. 5: Snapshots at the same travel distances shown in Fig.
4 are now shown using a single-hypothesis JCBB algorithm
to support EM exploration. In the first panel, an erroneous
association with an existing landmark corrupts state estima-
tion, and hinders the subsequent exploration process.

accurate landmark positions under high uncertainty. How-
ever, although allowing more estimation tracks improves per-
formance, especially in extremely uncertain environments,
the performance drop compared with SLAM under perfect
knowledge of data association is still substantial. This can
be explained by the fact that the error introduced by an
incorrect pairing is exacerbated by increased noise, thus more
hypotheses even with false positive pairings are considered
jointly compatible. Consequently, even if we increase the
quantity of hypotheses, the subtle differences in the posterior
error makes the hypothesis pruning process error-prone.

In addition, we show the number of visited nodes in the
interpretation forest during the entire trajectory, along with
all independently and jointly compatible nodes, in Fig. 3(b).
As mentioned above, the numbers of visited nodes along with
jointly compatible nodes undergo an approximately linear
increase as the noise level increases. However, the required
computation is still demanding in contrast to single hypothe-
sis JCBB, which visits fewer than 250 nodes (this JCBB visit
count is not shown in Fig. 2 due to the scaling of the plot).
Mixed depth-breadth first search aids MHJCBB by reducing
the number of joint compatibility checks required. Further
investigation shows that when limiting the maximum number
of nodes the search is allowed to visit, using MSDBF search
to spread out visited leaves among multiple interpretation
trees yields less accuracy loss, as shown in Table 1.

B. Autonomous Exploration

We further demonstrate the limitations of JCBB in a
scenario where a robot incurs critical drift while exploring
an unknown environment that is sparsely populated with
features. We have designed a series of environments as
shown in Fig. 4, where there are 4 “piers" at the corners, each

consisting of 8 landmarks, and another 20 landmarks dis-
tributed uniformly at random in the environment. The robot
has the same sensor with a fixed noise level (1.5°, 0.15m
for bearing and range measurement, 2.0°, 0.20m for rotation
and translation). Similarly, all competing methods were run
over 50 trials with different random landmarks selected.

From the representative example trial compared across
Fig. 4 and Fig. 5, we can observe two factors contributing to
the success of multi-hypothesis exploration with MHJCBB.
First, when faced with ambiguous data association, the belief
splits into multiple hypotheses, which has occurred in the
top left panel of Fig. 4 when the robot tries to relocalize
itself by revisiting its starting point, and in the bottom left
panel when the robot travels through a featureless region
into unknown space. Second, the EM exploration algorithm
prevents uncertainty from increasing by carrying out loop-
closing consistently, thereby eliminating unlikely hypotheses.

From simulated exploration conducted over a variety of
random features, we show the performance of our proposed
framework with respect to landmark error and localization
error in Fig. 6. As the prior uncertainty is small (the first
group of bars in Fig. 6(b)), all methods produce almost the
same maps (first group of bars in Fig. 6(a)). However, in-
correct data association has a negative influence on mapping
and localization (second group of bars). Mistakes will not
be rectified because the robot still keeps a consistent map by
adding a new landmark whenever there exists a measurement
that disagrees with the current constraints. As a result, a
small divergence causes more error in data association, which
can be observed in the growing error bars (last two groups).

We can also conclude that on one hand, increasing the
number of hypotheses improves robustness to ambiguity
(from MHJCBB(K = 3) to MHJCBB(K = 5)), and on
the other hand, using more hypotheses than necessary does
not bring about any further improvement (MHJCBB(K =
10)). The cause is as follows. As described above, the
elimination process is not performed regularly. Therefore, the
utility function in the planning step must take into account
more improbable trajectory and map hypotheses, such that
decisions are adjusted away from optimal ones. Despite
MHJCBB’s ability to distinguish correct hypotheses among
multiple tracks, information is still lost. A number of pairings
that do not necessarily result in ambiguity are considered to
be from new landmarks, which in Fig. 6 is evident from the
presence of slightly higher bars from MHJCBB than those
from perfect associations.

When applied to EM exploration, the most costly aspect of
using MHJCBB is the need to propagate its hypotheses over
the multiple candidate paths being considered by the robot
at every decision-making step. This is required to select the
path whose multiple tracks give rise to the best expected
reduction in map uncertainty relative to distance traveled.
When implemented with our C++ code, and run on an Intel
i7 6950 in Ubuntu 14.04, MHJCBB(K = 3) runs in real-
time over the examples explored here, and MHJCBB(K =
10) requires about 10 seconds of computation time per
exploration decision.



150 350 550 750
Traveled Distance

0

2

4

6

8

10

La
nd

m
ar

k 
Er

ro
r

(a)

150 350 550 750
Traveled Distance

0

2

4

6

8

10

Po
se

 E
rro

r JCBB
MHJCBB(3)
MHJCBB(5)
MHJCBB(10)
Perfect DA

(b)

Fig. 6: Results showing landmark errors and robot pose errors with respect to distance traveled over 50 trials of EM
exploration. Errors accumulate as the robot explores using JCBB, and in contrast, MHJCBB with different maximum numbers
of hypotheses (K = 3, 5, 10) produces comparable results to the trials with perfect knowledge of landmark associations.

VI. CONCLUSION

In this paper, we have presented a multiple hypothesis
data association framework for SLAM in ambiguous envi-
ronments. Multiple trajectory and map tracks are maintained
using a series of association hypotheses generated from
JCBB. Efficient hypothesis management is organized by
limiting hypothesis generation and pruning unlikely tracks,
which is enabled by providing two orderings. The most
important application we demonstrated is in online explo-
ration, which necessitates recovery from bad associations.
Simulations show that our algorithm effectively explores the
entire environment, more importantly without diverging from
the ground truth. However, the computational complexity is
substantial, and further investigation on how to efficiently
abstract ambiguity is our next step. Also, we do not consider
the active data association problem [11], [12], where the
robot is able to generate actions to diminish ambiguity.
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