Ma 221 - Exam II review

Second Order Differential Equations

Form of general solution

$$
y_{h}=c_{1} y_{1}+c_{2} y_{2}
$$

where y_{1} and y_{2} are linearly independent solutions of the homogeneous equation and

$$
y=y_{h}+y_{p}
$$

where y_{p} is a [particular] so;lution of the non-homogeneous equation.
Wronskian - provides a test for linear independence of solutions

$$
W\left[y_{1}, y_{2}\right]=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| .
$$

$W\left[y_{1}, y_{2}\right] \neq 0$ for linearlly independent solutions of the
homogeneous d.e.

Homogeneous D.E.

Constant coefficients -

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Solve auxiliary (characteristic) equation -

$$
p(r)=a r^{2}+b r+c=0
$$

2 real roots

$$
\begin{aligned}
r & =r_{1}, r_{2} \\
y_{h} & =c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
\end{aligned}
$$

repeated real roots

$$
\begin{aligned}
r & =r_{1} \\
y_{h} & =\left(c_{1}+c_{2} x\right) e^{r_{1} x}
\end{aligned}
$$

2 complex roots

$$
\begin{aligned}
r & =\alpha \pm i \beta \\
y_{h} & =\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right) e^{\alpha x}
\end{aligned}
$$

Cauchy-Euler D.E. -

$$
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0
$$

Solve auxiliary (indicial) equation -

$$
a m^{2}+(b-a) m+c=0
$$

Or one can divide by a and put the equation in the form

$$
x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0
$$

Then the auxiliary (indicial) equation that one must solve for m is

$$
m^{2}+(p-1) m+q=0
$$

2 real roots

$$
\begin{aligned}
m & =m_{1}, m_{2} \\
y_{h} & =c_{1} x^{m_{1}}+c_{2} x^{m_{2}}
\end{aligned}
$$

repeated real roots

$$
\begin{aligned}
m & =m_{1} \\
y_{h} & =\left(c_{1}+c_{2} \ln x\right) x^{m_{1}}
\end{aligned}
$$

2 complex roots

$$
\begin{aligned}
m & =\alpha \pm i \beta \\
y_{h} & =\left(c_{1} \cos \beta \ln x+c_{2} \sin \beta \ln x\right) x^{\alpha}
\end{aligned}
$$

Non-homogeneous D.E.

Undetermined coefficients

Constant coefficient d.e.

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=f(x) \\
f(x)=A e^{a x} \\
f(x)=(A \cos \beta x+B \sin \beta x) e^{\alpha x} \\
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
\end{gathered}
$$

and products of above
Be careful if $f(x)$ is a solution of the homogeneous equation.

In the case with $f(x)=A e^{\alpha x}$, the following formulae give the solution.

$$
y(x)=\left\{\begin{array}{cc}
\frac{A}{p(\alpha)} e^{\alpha x} & p(\alpha) \neq 0 \\
\frac{A}{p^{\prime}(\alpha)} x e^{\alpha x} & p(\alpha)=0, p^{\prime}(\alpha) \neq 0 \\
\frac{A}{p^{\prime \prime}(\alpha)} x^{2} e^{\alpha x} & p(\alpha)=p^{\prime}(\alpha)=0
\end{array}\right.
$$

Cauchy-Euler D.E.

$$
\begin{aligned}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y & =f(x) \\
f(x) & =A x^{p}
\end{aligned}
$$

If $f(x)$ is a solution of the homogeneous equation, use variation of parameters.

Variation of parameters

$$
\begin{aligned}
& a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x) \\
& y=v_{1} y_{1}+v_{2} y_{2} \\
& y_{1} v_{1}^{\prime}+y_{2} v_{2}^{\prime}=0 \\
& y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime}=\frac{f(x)}{a(x)} \\
& v_{1}^{\prime}=\frac{-f(x) y_{2}}{a(x)\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)} \\
& v_{2}^{\prime}=\frac{f(x) y_{1}}{a(x)\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)}
\end{aligned}
$$

