MA 221 Homework Solutions Due February 12, 2015

4.2 p. 165 - 166 #17, 26, 27 29

4.3, pg. 173 # 2, 4, 6, 8, <u>17</u>, <u>27</u>, <u>29b</u>

(Underlined problems are to be handed in)

Section 4.2

For problem 17, solve the initial value problem. 17.) z'' - 2z' - 2z = 0z'(0) = 3z(0) = 0The auxiliary equation for this problem, $r^2 - 2r - 2 = 0$, has roots $r = 1 \pm \sqrt{3}$. Thus, a general solution is given by $z(t) = c_1 e^{(1+\sqrt{3})t} + c_2 e^{(1-\sqrt{3})t}$ $z'(t) = c_1(1+\sqrt{3})e^{(1+\sqrt{3})t} + c_2(1-\sqrt{3})e^{(1-\sqrt{3})t}.$ Differentiating, we find that Substituting z'(t) into the initial condition yields the system z(t)and $z(0) = c_1 + c_2 = 0$ \rightarrow $z'(0) = c_1(1 + \sqrt{3}) + c_2(1 - \sqrt{3}) = \sqrt{3}(c_1 - c_2) = 3$ $\Rightarrow c_1 = \sqrt{3}/2$ $c_2 = -\sqrt{3}/2$ Thus, the solution satisfying the given initial conditions is $z(t) = \sqrt{3}/2e^{(1+\sqrt{3})t} - \sqrt{3}/2e^{(1-\sqrt{3})t} = \sqrt{3}/2(e^{(1+\sqrt{3})t} - e^{(1-\sqrt{3})t})$

26.) Boundary Value Problems

Given that every solution to y'' + y = 0 is of the form $y(x) = c_1 \cos x + c_2 \sin x$, where c_1 and c_2 are arbitrary constants, show that

(a) there is a unique solution to y'' + y = 0 that satisfies the boundary conditions y(0) = 2 and $y(\pi/2) = 0$.

(b) there is no solution to y'' + y = 0 that satisfies y(0) = 2 and $y(\pi) = 0$

(c) there are infinitely many solutions to y'' + y = 0 that satisfy y(0) = 2 and $y(\pi) = -2$

(a) Plugging
$$y(0) = 2$$
 into $y(x)$
 $2 = C_1 \cos 0 + C_2 \sin 0$
Therefore
 $C_1 = 2$
Plugging $y(\pi/2) = 0$ into $y(x)$
 $0 = 2\cos \frac{\pi}{2} + C_2 \sin \frac{\pi}{2}$
Therefore
 $C_2 = 0$
The solution with these conditions is
 $y(x) = 2\cos x$

(b) Plugging y(0) = 2 into y(x) $2 = C_1 \cos 0 + C_2 \sin 0$ Therefore $C_1 = 2$ Plugging $y(\pi) = 0$ into y(x) $0 = 2\cos \pi + C_2 \sin \pi$ The term with C_2 drops out leaving the equation 0 = -2This is not true, and thus there is no solution that satisfies these boundary conditions.

(c) Plugging y(0) = 2 into y(x) $2 = C_1 \cos 0 + C_2 \sin 0$ Therefore $C_1 = 2$ Plugging $y(\pi) = -2$ into y(x) $-2 = 2 \cos \pi + C_2 \sin \pi$ The term with C_2 drops out leaving the equation -2 = -2

This is true, and thus there are infinitely many solutions with these boundary conditions.

27.) Determine whether the functions $y_1(t) = \cos t \sin t$; $y_2(t) = \sin 2t$ are linearly independent on the interval (0, 1).

Since $\sin 2t = 2\cos t \sin t$, we have that $y_1 = 2y_2$ and the functions are not LI.

29.) Determine whether the functions $y_1(t) = te^{2t}$; $y_2(t) = e^{2t}$ are linearly independent on the interval (0,1).

(For this problem we use the Wronskian.)

These two functions are solutions of the DE

y'' - 4y' + 4y = 0

since this equation has the characteristic equation

$$r^2 - 4r + 4 = (r - 2)^2 = 0$$

and has the repeated root r = 2. Thus we may check to Wronskian. to see if it is zero or not. Now

$$W[te^{2t}, e^{2t}] = \begin{vmatrix} te^{2t} & e^{2t} \\ e^{2t} + 2te^{2t} & 2e^{2t} \end{vmatrix} = -e^{4t} \neq 0$$

Hence these functions are LI.

Section 4.3

In problems 2, 4, 6 and 8, the auxilliary equation for the given differential equation has complex roots. Find a general solution.

2.) y'' + 9y = 0Auxiliary equation $r^2 + 9 = 0$ $r = \pm 3i$ $\alpha = 0, \beta = 3$ $y(t) = c_1 e^{(0)t} \cos 3t + c_2 e^{(0)t} \sin 3t$

 $y(t) = c_1 \cos 3t + c_2 \sin 3t$ 4.) z'' - 6z' + 10z = 0Auxiliary equation $r^2 - 6r + 10 = 0$ $r = 3 \pm i$ $\alpha = 3, \beta = 1$ $z = c_1 e^{3t} \cos t + c_2 e^{3t} \sin t$ 6.) w'' + 4w' + 6w = 0Auxiliary equation $r^2 + 4r + 6 = 0$ Using the quadratic equation $r = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$ $r = \frac{-4 \pm \sqrt{16 - 24}}{2} = -2 \pm \sqrt{2}i$ $\alpha = -2, \beta = \sqrt{2}$ $w(t) = c_1 e^{-2t} \cos \sqrt{2} t + c_2 e^{-2t} \sin \sqrt{2} t$ 8.) 4y'' - 4y' + 26y = 0Auxiliary equation $2r^{2} - 2r + 13 = 0$ $r = \frac{1}{2} \pm \frac{5}{2}i$ $\alpha = \frac{1}{2}, \beta = \frac{5}{2}$ $y(t) = c_1 e^{t/2} \cos 5t/2 + c_2 e^{t/2} \sin 5t/2$

In problem 17, find a general solution.
17.)
$$y'' - y' + 7y = 0$$

Auxiliary equation
 $r^2 - r + 7 = 0$, Solution is: $\frac{3}{2}i\sqrt{3} + \frac{1}{2}, \frac{1}{2} - \frac{3}{2}i\sqrt{3}$
 $r = \frac{1}{2} \pm \frac{3\sqrt{3}}{2}i$
 $\alpha = 1/2, \beta = 3\sqrt{3}/2$
 $y(t) = c_1 e^{t/2} \cos(\frac{3\sqrt{3}}{2}t) + c_2 e^{t/2} \sin(\frac{3\sqrt{3}}{2}t)$

In problem 27, solve the given initial value problem. <u>27</u>.) y''' - 4y'' + 7y' - 6y = 0, y(0) = 1, y'(0) = 0, y''(0) = 0Auxiliary equation. $r^3 - 4r^2 + 7r - 6 = 0$ Examining the divisors of -6, that is, $\pm 1, \pm 2, \pm 3, \pm 6$, we find that r = 2 satisfies the equation. Next, we divide $r^3 - 4r^2 + 7r - 6 = 0$ by r - 2 $r^3 - 4r^2 + 7r - 6 = (r - 2)(r^2 - 2r + 3) \Rightarrow r = 2; r \frac{2 \pm \sqrt{4 - 12}}{2} = 1 \pm \sqrt{2}i$ A general solution to the differential equation is given by

 $y(t) = c_1 e^{2t} + c_2 e^t \cos \sqrt{2} t + c_3 e^t \sin \sqrt{2} t$

 \Rightarrow

$$y' = 2c_1e^{2t} + c_2e^t \cos\sqrt{2}t - \sqrt{2}c_2e^t \sin\sqrt{2}t + c_3e^t \sin\sqrt{2}t + \sqrt{2}c_3e^t \cos\sqrt{2}t = 2e^{2t}c_1 + e^tc_2(\cos t\sqrt{2} - \sqrt{2}\sin t\sqrt{2}) + e^tc_3(\sin t\sqrt{2} + \sqrt{2}\cos t\sqrt{2});$$

$$y'' = 4c_1e^{2t} + c_2e^t(-\cos\sqrt{2}t - 2\sqrt{2}\sin\sqrt{2}t) + c_3e^t(-\sin\sqrt{2}t + 2\sqrt{2}\cos\sqrt{2}t)$$

$$c_{1} + c_{2} = 1;$$

$$2c_{1} + c_{2} + \sqrt{2}c_{3} = 0;$$

$$4c_{1} - c_{2} + 2\sqrt{2}c_{3} = 0 \qquad \Rightarrow c_{1} = 1; \qquad c_{2} = 0; \qquad c_{3} = -\sqrt{2}$$

$$\Rightarrow$$

 \Rightarrow

$$y(t) = e^{2t} - \sqrt{2} e^t \sin \sqrt{2} t$$

In problem 29b, find a general solution to the higher-order equation. 29.) b. y''' + 2y'' + 5y' - 26y = 0Auxiliary equation: $r^3 + 2r^2 + 5r - 26 = 0$ Examining the divisors of -26, that is, $\pm 1, \pm 2, \pm 13$, we find that r = 2 sate

Examining the divisors of -26, that is, $\pm 1, \pm 2, \pm 13$, we find that r = 2 satisfies the equation. Next, we divide $y^3 + 2y^2 + 5y - 26$ by r - 2 $r^3 + 2r^2 + 5r - 26 = (r - 2)(r^2 + 4r + 13) \implies r = 2; \quad r = -2 \pm 3i \implies$ A general solution to the differential equation is given by $y(t) = c_1 e^{2t} + c_2 e^{-2t} \cos 3t + c_3 e^{-2t} \sin 3t$