MA 221 Homework Solutions
 Due February 12, 2015

4.2 p. 165-166 \#17, 26, 2729
4.3, pg. 173 \# 2, 4, 6, $\underline{8}, \underline{17} \underline{2}, \underline{7}, \underline{29} \underline{b}$
(Underlined problems are to be handed in)

Section 4.2

For problem 17, solve the intial value problem.
17.) $z^{\prime \prime}-2 z^{\prime}-2 z=0 \quad z(0)=0 \quad z^{\prime}(0)=3$

The auxiliary equation for this problem, $\quad r^{2}-2 r-2=0$, has roots $r=1 \pm \sqrt{3}$.
Thus, a general solution is given by $\quad z(t)=c_{1} e^{(1+\sqrt{3}) t}+c_{2} e^{(1-\sqrt{3}) t}$
Differentiating, we find that $\quad z^{\prime}(t)=c_{1}(1+\sqrt{3}) e^{(1+\sqrt{3}) t}+c_{2}(1-\sqrt{3}) e^{(1-\sqrt{3}) t}$.
Substituting $\quad z(t)$ and $z^{\prime}(t)$ into the initial condition yields the system
$z(0)=c_{1}+c_{2}=0$
$z^{\prime}(0)=c_{1}(1+\sqrt{3})+c_{2}(1-\sqrt{3})=\sqrt{3}\left(c_{1}-c_{2}\right)=3$
$\Rightarrow c_{1}=\sqrt{3} / 2$
$c_{2}=-\sqrt{3} / 2$
Thus, the solution satisfying the given initial conditions is
$z(t)=\sqrt{3} / 2 e^{(1+\sqrt{3}) t}-\sqrt{3} / 2 e^{(1-\sqrt{3}) t}=\sqrt{3} / 2\left(e^{(1+\sqrt{3}) t}-e^{(1-\sqrt{3}) t}\right)$
26.) Boundary Value Problems

Given that every solution to $y^{\prime \prime}+y=0$ is of the form $y(x)=c_{1} \cos x+c_{2} \sin x$, where c_{1} and c_{2} are arbitrary constants, show that
(a) there is a unique solution to $y^{\prime \prime}+y=0$ that satisfies the boundary conditions $y(0)=2$ and $y(\pi / 2)=0$.
(b) there is no solution to $y^{\prime \prime}+y=0$ that satisfies $y(0)=2$ and $y(\pi)=0$
(c) there are infinitely many solutions to $y^{\prime \prime}+y=0$ that satisfy $y(0)=2$ and $y(\pi)=-2$
(a) Plugging $y(0)=2$ into $y(x)$
$2=C_{1} \cos 0+C_{2} \sin 0$
Therefore
$C_{1}=2$
Plugging $y(\pi / 2)=0$ into $y(x)$
$0=2 \cos \frac{\pi}{2}+C_{2} \sin \frac{\pi}{2}$
Therefore
$C_{2}=0$
The solution with these conditions is
$y(x)=2 \cos x$
(b) Plugging $y(0)=2$ into $y(x)$
$2=C_{1} \cos 0+C_{2} \sin 0$
Therefore
$C_{1}=2$
Plugging $y(\pi)=0$ into $y(x)$
$0=2 \cos \pi+C_{2} \sin \pi$
The term with C_{2} drops out leaving the equation
$0=-2$
This is not true, and thus there is no solution that satisfies these boundary conditions.
(c) Plugging $y(0)=2$ into $y(x)$
$2=C_{1} \cos 0+C_{2} \sin 0$
Therefore
$C_{1}=2$
Plugging $y(\pi)=-2$ into $y(x)$
$-2=2 \cos \pi+C_{2} \sin \pi$
The term with C_{2} drops out leaving the equation
$-2=-2$
This is true, and thus there are infinitely many solutions with these boundary conditions.
27.) Determine whether the functions $y_{1}(t)=\cos t \sin t ; y_{2}(t)=\sin 2 t$ are linearly independent on the interval $(0,1)$.

Since $\sin 2 t=2 \cos t \sin t$, we have that $y_{1}=2 y_{2}$ and the functions are not LI.
29.) Determine whether the functions $y_{1}(t)=t e^{2 t} ; y_{2}(t)=e^{2 t}$ are linearly independent on the interval $(0,1)$.
(For this problem we use the Wronskian.)
These two functions are solutions of the DE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

since this equation has the characteristic equation
$r^{2}-4 r+4=(r-2)^{2}=0$
and has the repeated root $r=2$. Thus we may check to Wronskian. to see if it is zero or not. Now

$$
W\left[t e^{2 t}, e^{2 t}\right]=\left|\begin{array}{cc}
t e^{2 t} & e^{2 t} \\
e^{2 t}+2 t e^{2 t} & 2 e^{2 t}
\end{array}\right|=-e^{4 t} \neq 0
$$

Hence these functions are LI.

Section 4.3

In problems 2, 4, 6 and 8, the auxilliary equation for the given differential equation has complex roots. Find a general solution.
2.) $y^{\prime \prime}+9 y=0$

Auxiliary equation
$r^{2}+9=0$
$r= \pm 3 i$
$\alpha=0, \beta=3$
$y(t)=c_{1} e^{(0) t} \cos 3 t+c_{2} e^{(0) t} \sin 3 t$
$y(t)=c_{1} \cos 3 t+c_{2} \sin 3 t$
4.) $z^{\prime \prime}-6 z^{\prime}+10 z=0$

Auxiliary equation
$r^{2}-6 r+10=0$
$r=3 \pm i$
$\alpha=3, \beta=1$
$z=c_{1} e^{3 t} \cos t+c_{2} e^{3 t} \sin t$
6.) $w^{\prime \prime}+4 w^{\prime}+6 w=0$

Auxiliary equation
$r^{2}+4 r+6=0$
Using the quadratic equation $r=\frac{-b \pm \sqrt{b^{2}+4 a c}}{2 a}$
$r=\frac{-4 \pm \sqrt{16-24}}{2}=-2 \pm \sqrt{2} i$
$\alpha=-2, \beta=\sqrt{2}$
$w(t)=c_{1} e^{-2 t} \cos \sqrt{2} t+c_{2} e^{-2 t} \sin \sqrt{2} t$
8.) $4 y^{\prime \prime}-4 y^{\prime}+26 y=0$

Auxiliary equation
$2 r^{2}-2 r+13=0$
$r=\frac{1}{2} \pm \frac{5}{2} i$
$\alpha=\frac{1}{2}, \beta=\frac{5}{2}$
$y(t)=c_{1} e^{t / 2} \cos 5 t / 2+c_{2} e^{t / 2} \sin 5 t / 2$
In problem 17, find a general solution.
17.) $y^{\prime \prime}-y^{\prime}+7 y=0$

Auxiliary equation
$r^{2}-r+7=0$, Solution is: $\frac{3}{2} i \sqrt{3}+\frac{1}{2}, \frac{1}{2}-\frac{3}{2} i \sqrt{3}$
$r=\frac{1}{2} \pm \frac{3 \sqrt{3}}{2} i$
$\alpha=1 / 2, \beta=3 \sqrt{3} / 2$
$y(t)=c_{1} e^{t / 2} \cos \left(\frac{3 \sqrt{3}}{2} t\right)+c_{2} e^{t / 2} \sin \left(\frac{3 \sqrt{3}}{2} t\right)$
In problem 27, solve the given initial value problem.
2ㄱ..) $y^{\prime \prime \prime}-4 y^{\prime \prime}+7 y^{\prime}-6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=0$
Auxiliary equation.
$r^{3}-4 r^{2}+7 r-6=0$
Examining the divisors of -6 , that is, $\pm 1, \pm 2, \pm 3, \pm 6$, we find that $r=2$ satisfies the equation.
Next, we divide $r^{3}-4 r^{2}+7 r-6=0$ by $r-2$
$r^{3}-4 r^{2}+7 r-6=(r-2)\left(r^{2}-2 r+3\right) \Rightarrow r=2 ; r \frac{2 \pm \sqrt{4-12}}{2}=1 \pm \sqrt{2} i$
A general solution to the differential equation is given by $y(t)=c_{1} e^{2 t}+c_{2} e^{t} \cos \sqrt{2} t+c_{3} e^{t} \sin \sqrt{2} t$
\Rightarrow

$$
\begin{aligned}
& y^{\prime}=2 c_{1} e^{2 t}+c_{2} e^{t} \cos \sqrt{2} t-\sqrt{2} c_{2} e^{t} \sin \sqrt{2} t+c_{3} e^{t} \sin \sqrt{2} t+\sqrt{2} c_{3} e^{t} \cos \sqrt{2} t \\
& =2 e^{2 t} c_{1}+e^{t} c_{2}(\cos t \sqrt{2}-\sqrt{2} \sin t \sqrt{2})+e^{t} c_{3}(\sin t \sqrt{2}+\sqrt{2} \cos t \sqrt{2}) ; \\
& y^{\prime \prime}=4 c_{1} e^{2 t}+c_{2} e^{t}(-\cos \sqrt{2} t-2 \sqrt{2} \sin \sqrt{2} t)+c_{3} e^{t}(-\sin \sqrt{2} t+2 \sqrt{2} \cos \sqrt{2} t) \\
& \Rightarrow \\
& \\
& c_{1}+c_{2}=1 ; \\
& 4 c_{1}-c_{2}+2 \sqrt{2} c_{3}=0 \quad \Rightarrow c_{1}=1 ; \quad c_{2}=0 ; \quad c_{3}=-\sqrt{2} \\
& \Rightarrow \quad 2 c_{1}+c_{2}+\sqrt{2} c_{3}=0 ;
\end{aligned}
$$

In problem 29b, find a general solution to the higher-order equation.
29.) b.
$y^{\prime \prime \prime}+2 y^{\prime \prime}+5 y^{\prime}-26 y=0$
Auxiliary equation:
$r^{3}+2 r^{2}+5 r-26=0$
Examining the divisors of -26 , that is, $\pm 1, \pm 2, \pm 13$, we find that $r=2$ satisfies the equation.
Next, we divide $y^{3}+2 y^{2}+5 y-26$ by $r-2$
$r^{3}+2 r^{2}+5 r-26=(r-2)\left(r^{2}+4 r+13\right) \quad \Rightarrow r=2 ; \quad r=-2 \pm 3 i \quad \Rightarrow$
A general solution to the differential equation is given by $y(t)=c_{1} e^{2 t}+c_{2} e^{-2 t} \cos 3 t+c_{3} e^{-2 t} \sin 3 t$

