Ma 221 Homework Solutions Due 2/26/15

4.4 Page 182 18, 19, 24, 34

18.

$$y'' + 4y = 8\sin 2t$$

The characteristic polynomial is $p(r) = r^2 + 4$ so the roots are $r = \pm 2i$ and therefore $y_h = c_1 \sin 2t + c_2 \cos 2t$

Consider a companion equation

$$v'' + 4v = 8\cos 2t$$

Multiplying the first equation by i and adding it to the second equation yields

$$v'' + iv'' + v + iv = 8(\cos 2t + i\sin 2t) = 8e^{2it}$$

Let w = v + iy. Then we have

$$w'' + 4w = 8e^{2it}$$

Since p(2i) = 0, but $p'(2i) = 4i \neq 0$, then

$$w_p = \frac{8te^{2it}}{4i} = 2\frac{te^{2it}}{i}$$

 $y_p = \text{Im} w_p$

$$w_p = 2\frac{te^{2it}}{i} \times \frac{i}{i} = -2ite^{2it}$$
$$= -2it(\cos 2t + i\sin 2t)$$

Thus

$$y_p = -2t\cos 2t$$

19.

$$4y'' + 11y' - 3y = -2te^{-3t}$$

Consider the homogeneous equation 4y'' + 11y' - 3y = 0 first.

$$p(r) = 4r^2 + 11r - 3 = 0$$

$$r = \frac{-11 \pm \sqrt{121 - 4(4)(-3)}}{2(8)} = \frac{-11 \pm \sqrt{169}}{2(8)} = \frac{-11 \pm 13}{16} = -3, \frac{1}{8}$$

Thus e^{-3t} is a homogeneous solution.

$$y_p = t(A_1t + A_0)e^{-3t} = (A_1t^2 + A_0t)e^{-3t}$$

$$y_p' = \left[-3A_1t^2 + (2A_1 - 3A_0)t + A_0 \right]e^{-3t}$$

$$y_p'' = [9A_1t^2 + (9A_0 - 12A_1)t + 2A_1 - 6A_0]e^{-3t}$$

Substituting into the DE yields after some algebra

$$[-26A_1t + (8A_1 - 13A_0)]e^{-3t} = -2te^{-3t}$$

Thus

$$-26A_1 = -2$$
$$8A_1 - 13A_0 = 0$$

Hence $A_0 = \frac{8}{169}, A_1 = \frac{1}{13}$ and

$$y_p = \left(\frac{t}{13} + \frac{8}{169}\right) te^{-3t}$$

24.

$$y'' + y = 4x\cos x$$

Since $\cos x$ and $\sin x$ are homogeneous solutions, the we let

$$y_p = (A_1 x^2 + A_0 x) \cos x + (B_1 x^2 + B_0 x) \sin x$$

Thus

$$y_p' = \left[B_1 x^2 + (B_0 + 2A_1)x + A_0 \right] \cos x + \left[-A_1 x^2 + (2B_1 - A_0)x + B_0 \right] \sin x$$

and

$$y_p'' = \left[-A_1 x^2 + (4B_1 - A_0)x + 2(B_0 + A_1) \right] \cos x + \left[-B_1 x^2 + (-4A_1 - B_0)x + 2(B_1 - A_0) \right] \sin x$$

Substituting into the DE and combining yields

$$[4B_1x + 2(B_0 + A_1)]\cos x + [-4A_1x + 2(B_1 - A_0)]\sin x = 4x\cos x$$

Hence

$$4B_1 = 4$$
 or $B_1 = 1$
 $-4A_1 = 0$ so $A_1 = 0$
 $2(B_0 + A_1) = 0$ so $B_0 = -A_1 = 0$
 $2(B_1 - A_0) = 0$ so $A_0 = B_1 = 1$

Thus

$$y_p = x\cos x + x^2\sin x$$

34.

$$2y''' + 3y'' + y' - 4y = e^{-t}$$

The characteristic equation is

$$p(r) = 2r^3 + 3r^2 + r - 4 = 0$$

 $p(-1) = -2 + 3 - 1 - 4 = -4 \neq 0$. Thus e^{-t} is not a homogeneous solution and

$$y_p = Ae^{-t}$$

 $y_p' = -Ae^{-t}$, $y_p''' = +Ae^{-t}$, $y_p''' = -Ae^{-t}$ Substituting into the DE we have

$$(-2A + 3A - A - 4A)e^{-t} = e^{-t}$$

or -4A = 1 so

$$y_p = -\frac{1}{4}e^{-t}$$