Ma 221 Homework Solutions Due Date: Feb. 3, 2015

2.3 p.51-53 \#2, 4, 6, 8, 9, 11, 19, 30; §2.6 p. 74 \#21, 23, 28 (Underlined problems are handed in)

2.3 p. 51 to p. 53 \#2, 4, 6, 8, $\underline{9}, 10,11,13,15, \underline{17}, 18, \underline{19}, 21,22, \underline{30}$ (Underlined Problems are handed in)

For problems 1, 3, and 5 determine whether the given equation is separable, linear, neither, or both.
2.) $x^{2} \frac{d y}{d x}+\sin x=y$

Isolating $\frac{d y}{d x}$ we get:
$\frac{d y}{d x}=\frac{y-\sin x}{x^{2}}$. Since the right hand side cannot be represented as a product $g(x) p(y)$, the equation is not separable.
4.) $\left(t^{2}+1\right) \frac{d y}{d t}=y t-y$

This is a linear equation with independent variable t and dependent variable y. This is a separable equation as shown:

> Isolating $\frac{d y}{d t}$ we get:
> $\frac{d y}{d t}=\frac{y(t-1)}{\left(t^{2}+1\right)} \Rightarrow \quad \frac{d y}{y}=\frac{(t-1)}{\left(t^{2}+1\right)} d t \Rightarrow \quad \frac{d y}{d t}=\frac{(t-1)}{\left(t^{2}+1\right)} y=g(t) p(y)$
> 6.) $x \frac{d x}{d t}+t^{2} x=\sin t$

In this equation, the independent variable is t and the dependent variable is x.
Dividing by x we obtain
$\frac{d x}{d t}=\frac{\sin t}{x}-t^{2}$.
Therefore, it is neither linear, because of the $\frac{\sin t}{x}$ term, nor separable, because the right-hand side is not a product of functions of single variables x and t.

For problems 8, 9, 11, 13 and 15, obtain the general solution to the equation
8.) $\frac{d y}{d x}-y-e^{3 x}=0$

In this equation, $P(x)=-1$ and $Q(x)=e^{3 x}$
The integrating factor is thus: $\mu(x)=\exp \left(\int P(x) d x\right)=\exp \left(\int(-1) d x\right)=e^{-x}$
Multiplying both sides of the equation by $\mu(x)$ and integrating yields:

$$
\begin{aligned}
& e^{-x} \frac{d y}{d x}-e^{-x} y=e^{-x} e^{3 x}=e^{2 x} \Rightarrow \frac{d\left(e^{-x} y\right)}{d x}=e^{2 x} \\
\Rightarrow & e^{-x} y=\int e^{2 x} d x=\frac{1}{2} e^{2 x}+C \Rightarrow y=\left(\frac{1}{2} e^{2 x}+C\right) e^{x}=\frac{e^{3 x}}{2}+C e^{x}
\end{aligned}
$$

9.) $x \frac{d y}{d x}+2 y=x^{-3}$

Putting the equation in standard form:
$\frac{d y}{d x}+\frac{2}{x} y=x^{-4}$
Find $\mu(x)=e^{\int P d x}=e^{\int\left(\frac{2}{x}\right) d x}=e^{(2 \ln |x|)}=(|x|)^{2}=x^{2}$
Multiply through by $\mu(x)$ to get
$x^{2} \frac{d y}{d x}+2 x y=x^{-2} \Rightarrow \quad \frac{d}{d x} y x^{2}=x^{-2}$
Integrate to get
$\int \frac{d}{d x} y x^{2}=\int x^{-2}$
$y x^{2}=-x^{-1}+C$
Solve explicitly for y
$\Rightarrow y=-x^{-3}+C x^{-2}$
11.) $(t+y+1) d t-d y=0$

Choosing t as the independent variable and y as the dependent variable, the equation can be put into standard form:

$$
t+y+1-\frac{d y}{d t}=0 \Rightarrow \frac{d y}{d t}-y=t+1
$$

Thus: $P(t)=-1$ and $\mu(t)=\exp \left[\int(-1) d t\right]=e^{-t}$
Multiplying both sides by $\mu(t)$ and integrating yields:
$e^{-t} \frac{d y}{d t}-e^{-t} y=(t+1) e^{-t} \Rightarrow \frac{d\left(e^{-t} y\right)}{d t}=(t+1) e^{-t}$
$\Rightarrow e^{-t} y=\int(t+1) e^{-t} d t=-(t+1) e^{-t}+\int e^{-t} d t=-(t+1) e^{-t}-e^{-t}+C=-(t+2) e^{-t}+C$
$\Rightarrow y=e^{t}\left(-(t+2) e^{-t}+C\right)=-t-2+C e^{t}$
13.) $y \frac{d x}{d y}+2 x=5 y^{3}$

In this problem, the independent variable is y and the dependent variable is x. So, we divide the equation by y to rewrite it in standard form.

$$
y \frac{d x}{d y}+2 x=5 y^{3} \Rightarrow \quad \frac{d x}{d y}+\frac{2}{y} x=5 y^{2}
$$

Therefore, $P(y)=\frac{2}{y}$ and the integrating factor, $\mu(y)$, is

$$
\mu(y)=e^{\int \frac{2}{y} d y}=e^{2 \ln |y|}=|y|^{2}=y^{2}
$$

Multiplying the equation (in standard form) by y^{2} and integrating yield
$\left(\frac{d x}{d y}+\frac{2}{y} x=5 y^{2}\right) y^{2}=y^{2} \frac{d x}{d y}+2 y x=5 y^{4} \Rightarrow \quad \frac{d}{d y}\left(y^{2} x\right)=5 y^{4}$
$\Rightarrow \quad y^{2} x=\int 5 y^{4} d y=y^{5}+C$
$\Rightarrow x=y^{-2}\left(y^{5}+C\right)=y^{3}+C y^{-2}$
15.) $\left(x^{2}+1\right) \frac{d y}{d x}+x y-x=0$

Divide by $\left(x^{2}+1\right)$
$\frac{d y}{d x}+\frac{x}{x^{2}+1} y=\frac{x}{x^{2}+1}$
so $P(x)=\frac{x}{x^{2}+1}$
Find $\mu(x)=e^{\int P(x) d x}$
$\mu(x)=e^{\int \frac{x}{x^{2}+1}}=e^{\frac{1}{2} \ln \left(x^{2}+1\right)}=\left(x^{2}+1\right)^{(1 / 2)}$
Multiply through by $\mu(x)$ to get
$\left(x^{2}+1\right)^{\frac{1}{2}} y^{\prime}+\frac{x}{\left(x^{2}+1\right)^{\frac{1}{2}}} y=\frac{x}{\left(x^{2}+1\right)^{\frac{1}{2}}}$ or
$\frac{d}{d x}\left(\left(x^{2}+1\right)^{\frac{1}{2}} y\right)=\frac{x}{\left(x^{2}+1\right)^{\frac{1}{2}}}$
Integrating gives
$y\left(x^{2}+1\right)^{(1 / 2)}=\left(x^{2}+1\right)^{(1 / 2)}+C$
Solve explicitly for y
$y=1+C\left(x^{2}+1\right)^{-(1 / 2)}$
For problems 17, 18 and 19, 21, 22 solve the initial value problems.
17.)

$$
\frac{d y}{d x}-\frac{y}{x}=x e^{x} \quad y(1)=e-1
$$

This is a linear equation with $P(x)=-1 / x$ and $Q(x)=x e^{x}$. The integrating factor is given by:
$\mu(x)=e^{\int P d x}=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=\frac{1}{x} ; \quad$ For $x>0$
Multiply through by $\mu(x)$ to get
$\frac{1}{x} y^{\prime}-\frac{y}{x^{2}}=e^{x}$
or
$\frac{1}{x} \frac{d y}{d x}-\frac{y}{x^{2}}=e^{x}$
Integrate to get
$\frac{y}{x}=e^{x}+C$
Solve explicitly for y
$y=x e^{x}+C x$

Plug in initial condition $y(1)=e-1$ and solve for C
$e-1=e+C \Rightarrow \quad C=-1$
Plug in the value for C
$y=x e^{x}-x$
Using SNB to check our answer we have

$$
\begin{aligned}
& \frac{d y}{d x}-\frac{y}{x}=x e^{x} \\
& y(1)=e-1
\end{aligned}
$$

18.) $\frac{d y}{d x}+4 y-e^{-x}=0 ; y(0)=\frac{4}{3}$
$\frac{d y}{d x}+4 y=e^{-x}$
Find $\mu(x)=e^{\int P d x}=e^{\int 4 d x}=e^{4 x}$
Multiply through by $\mu(x)$ to get
$e^{4 x} y^{\prime}+4 e^{4 x} y=e^{3 x}$
or
$\frac{d}{d x}\left(e^{4 x} y\right)=e^{3 x}$
Integrate to get
$y e^{4 x}=\frac{1}{3} e^{3 x}+c$
Solve explicitly for y
$y=\frac{1}{3} e^{-x}+\frac{C}{e^{4 x}}$
Plug in initial condition $y(0)=\frac{4}{3}$ and solve for C
$\frac{4}{3}=\frac{1}{3} e^{-0}+\frac{C}{e^{4(0)}}$
$\frac{4}{3}=\frac{1}{3}+C$
So $C=1$
Plug in the value for C
$y=\frac{1}{3} e^{-x}+e^{-4 x}$
Using SNB to check our answer we have

$$
\begin{gathered}
\frac{d y}{d x}+4 y-e^{-x}=0 \\
y(0)=\frac{4}{3}
\end{gathered}
$$

19.)

$$
t^{2} \frac{d x}{d t}+3 t x=t^{4} \ln t+1, \quad x(1)=0
$$

In this problem, t is the dependent variable and x is the dependent variable. Dividing by t^{2} we have

$$
\frac{d x}{d t}+\frac{3}{t} x=t^{2} \ln t+\frac{1}{t^{2}}
$$

The integrating factor is $e^{\int \frac{3}{t} d t}=t^{3}$. Thus

$$
t^{3} \frac{d x}{d t}+3 t^{2} x=t^{5} \ln t+t
$$

or

$$
\frac{d}{d t}\left(t^{3} x\right)=t^{5} \ln t+t
$$

Integrating we have since $\int t^{5} \ln t d t=\frac{1}{6} t^{6} \ln t-\frac{1}{36} t^{6}+c$

$$
t^{3} x=\frac{1}{6} t^{6} \ln t-\frac{1}{36} t^{6}+\frac{t^{2}}{2}+c
$$

The IC implies

$$
0=-\frac{1}{36}+\frac{1}{2}+c
$$

So $c=-\frac{17}{36}$ and

$$
t^{3} x=\frac{1}{6} t^{6} \ln t-\frac{1}{36} t^{6}+\frac{t^{2}}{2}-\frac{17}{36}
$$

or

$$
x=\frac{1}{6} t^{3} \ln t-\frac{1}{36} t^{3}+\frac{1}{2 t}-\frac{17}{36 t^{3}}
$$

21.) $\cos x \frac{d y}{d x}+y \sin x=2 x \cos ^{2} x, \quad y\left(\frac{\pi}{4}\right)=\frac{-15 \sqrt{2} \pi^{2}}{32}$

Putting the equation in standard form:
$\frac{d y}{d x}+\frac{\sin x}{\cos x} y=2 x \cos x \Rightarrow \quad \frac{d y}{d x}+(\tan x) y=2 x \cos x$
Find $\mu(x)=e^{\int P d x}=e^{\int \tan x d x}=e^{(-\ln |\cos x|)}=|\cos x|^{-1}$
At the initial point, $x=\frac{\pi}{4}, \cos \frac{\pi}{4}>0$ therefore we can take $\mu(x)=(\cos x)^{-1}$
Multiply through by $\mu(x)$ to get
$\frac{1}{\cos x} \frac{d y}{d x}+\frac{\sin x}{\cos ^{2} x} y=2 x \quad \Rightarrow \quad \frac{d}{d x}\left(\frac{y}{\cos x}\right)=2 x$
Integrate to get
$\int \frac{d}{d x}\left(\frac{y}{\cos x}\right)=\int 2 x$
$\frac{y}{\cos x}=x^{2}+C$
Solve explicitly for y
$y=x^{2} \cos x+C \cos x$
Plug in initial condition $y\left(\frac{\pi}{4}\right)=\frac{-15 \sqrt{2} \pi^{2}}{32}$ and solve for C
$\frac{-15 \sqrt{2} \pi^{2}}{32}=\frac{\pi}{4}^{2} \cos \frac{\pi}{4}+C \cos \frac{\pi}{4}$
So $C=-\pi^{2}$
Plug in the value for C
$y=x^{2} \cos x-\pi^{2} \cos x=\cos x\left(x^{2}-\pi^{2}\right)$
22.) $\sin x \frac{d y}{d x}+y \cos x=x \sin x, \quad y\left(\frac{\pi}{2}\right)=2$

Putting the equation in standard form:
$\frac{d y}{d x}+\frac{\cos x}{\sin x} y=x \Rightarrow \quad \frac{d y}{d x}+(\cot x) y=x$
Find $\mu(x)=e^{\int P d x}=e^{\int\left(\frac{\cos x}{\sin x}\right) d x}=e^{(\ln (\sin x))}=\sin x$
Multiply through by $\mu(x)$ to get
$\sin x \frac{d y}{d x}+y \cos x=x \sin x \Rightarrow \quad \frac{d}{d x}(y \sin x)=x \sin x$
Integrate to get
$\int \frac{d}{d x}(y \sin x)=\int x \sin x \quad$ (Using integration by parts)
$y \sin x=\sin x-x \cos x+C$
Solve explicitly for y
$y=1-x \frac{\cos x}{\sin x}+\frac{C}{\sin x}=1-x \cot x+\frac{C}{\sin x}$
Plug in initial condition $y\left(\frac{\pi}{2}\right)=2$ and solve for C
$2=1-\frac{\pi}{2} \frac{\cos \frac{\pi}{2}}{\sin \frac{\pi}{2}}+\frac{C}{\sin \frac{\pi}{2}}$
So $C=1$
Plug in the value for C
$y=1-x \cot x+\frac{1}{\sin x}=1-x \cot x+\csc x$
30.) Show that the substitution $v=y^{3}$ reduces equation $\frac{d y}{d x}+2 y=x y^{-2}$ to the equation $\frac{d v}{d x}+6 v=3 x$. Then solve the equation for v, and make the substitution $v=y^{3}$ to obtain the solution the equation $\frac{d y}{d x}+2 y=x y^{-2}$.
$\frac{d y}{d x}+2 y=x y^{-2}$
Divide by y^{-2}
$y^{2} \frac{d y}{d x}+2 y^{3}=x$
$v=y^{3}$
Differentiate v with respect to x
$\frac{d v}{d x}=3 y^{2} \frac{d y}{d x}$
Divide by 3
$\frac{1}{3} \frac{d v}{d x}=y^{2} \frac{d y}{d x}$
Notice that $\frac{1}{3} \frac{d v}{d x}$ is equal to the first term on the left hand side of the equation. Make that substitution.
$\frac{1}{3} \frac{d v}{d x}+2 v=x$
Now multiply by 3 to get a first order linear differential equation.
$\frac{d v}{d x}+6 v=3 x$
........(First order linear differential equation)
Find $\mu(x)$
$\mu(x)=e^{\int 6 d x}=e^{6 x}$
Multiply through by $\mu(x)$ to get
$e^{6 x} v^{\prime}+6 e^{6 x} v=\frac{d}{d x}\left(e^{6 x} v\right)=3 x e^{6 x}$ Now integrate
$v e^{6 x}=\int e^{6 x}(3 x) d x=\frac{1}{2} x e^{6 x}-\frac{1}{12} e^{6 x}+C$
Where SNB was used to evaluate the integral.
Solve explicitly for v yields
$v=\frac{1}{2} x-\frac{1}{12}+C e^{-6 x}$
Plug y back into the equation from the substitution $v=y^{3}$ and solve for y.
$y^{3}=\frac{1}{2} x-\frac{1}{12}+C e^{-6 x}$
or
$y=\left(\frac{1}{2} x-\frac{1}{12}+C e^{-6 x}\right)^{\frac{1}{3}}$

2.6 p. 74 \# 21, 23, 28

For 21, 23 and 28 use the method discussed under "Bernoulli Equations" to solve the problems.
21.)
$\frac{d y}{d x}+\frac{y}{x}=x^{2} y^{2}$
This is a Bernoulli Equation with $n=2$
Let
$u=y^{1-n}=y^{1-2}=y^{-1}$
then $y=u^{-1} \quad \Rightarrow y^{\prime}=-u^{2} u^{\prime}$
and the last equation becomes
$-\frac{1}{u^{2}} \frac{d u}{d x}+\frac{1}{u x}=\frac{x^{2}}{u^{2}} \quad \Rightarrow \quad \frac{d u}{d x}-\frac{1}{x} u=-x^{2}$
This is a linear equation with $P(x)=-\frac{1}{x}$
Find $\mu(x)=e^{\int P d x}=e^{\int\left(-\frac{1}{x}\right) d x}=e^{(-\ln |x|)}=x^{-1}$
Multiply through by $\mu(x)$ to get
$\frac{1}{x} \frac{d u}{d x}-\frac{1}{x^{2}} u=-x \Rightarrow \quad \frac{d}{d x}\left(\frac{1}{x} u\right)=-x$
Integrate to get
$\int \frac{d}{d x}\left(\frac{1}{x} u\right)=\int-x d x$
$\frac{1}{x} u=\frac{-x^{2}}{2}+C_{1} \Rightarrow \quad u=-\frac{1}{2} x^{3}+C_{1} x$
Solve explicitly for y
$y=\frac{1}{\frac{x^{3}}{2}+C_{1} x}=\frac{2}{C x-x^{3}}$
$y=0 \quad$ is also a solution to the original equation. It was lost in the first step when we multiplied by u^{2} (also same as dividing by y^{2}).
23.)
$\frac{d y}{d x}=\frac{2 y}{x}-x^{2} y^{2}$
or after dividing by y^{2} and moving the first term on the right to the left we have $y^{-2} \frac{d y}{d x}-\frac{2 y^{-1}}{x}=-x^{2}$

Let
$v=y^{-1}$
$v^{\prime}=-y^{-2} y^{\prime}$
and the last equation becomes
$v^{\prime}+2 \frac{v}{x}=x^{2}$
This is a first order linear equation in v.
The integrating faction for this equation is
$e^{\int \frac{2}{x} d x}=x^{2}$
Multiplying the DE by this gives
$x^{2} v^{\prime}+2 x v=\frac{d}{d x}\left(x^{2} v\right)=x^{4}$
Thus
$x^{2} v=\frac{1}{5} x^{5}+c_{1}$
and
$\frac{1}{y}=v=\frac{x^{3}}{5}+\frac{c_{1}}{x^{2}}$
Therefore
$y=\left(\frac{x^{5}+5 c_{1}}{5 x^{2}}\right)^{-1}$
Letting $C=5 c_{1}$ we have finally
$y=\left(\frac{5 x^{2}}{x^{5}+C}\right)$
$y=0 \quad$ is also a solution to the original equation. It was lost in the first step when we divided by y^{2}.
28.)
$\frac{d y}{d x}+y^{3} x+y=0$
Rewrite the equation as
$y^{\prime}+y=-x y^{3}$
Multiply both sides by y^{-3} to get
$y^{-3} y^{\prime}+y^{-2}=-x$
Let
$v=y^{-2}$
$v^{\prime}=-2 y^{-3} y^{\prime}$
The DE then can be written as
$-\frac{v^{\prime}}{2}+v=-x$
or
$v^{\prime}-2 v=2 x$
This is a first order linear equation in v. The integrating factor is
$e^{\int-2 d x}=e^{-2 x}$
Multiplying the last equation by this leads to
$e^{-2 x} v^{\prime}-2 e^{-2 x} v=\frac{d}{d x}\left(e^{-2 x} v\right)=2 x e^{-2 x}$

Integrating gives
$e^{-2 x} v=\int\left(2 x e^{-2 x}\right) d x=-\frac{1}{2} e^{-2 x}-x e^{-2 x}+c$
Thus
$\frac{1}{y^{2}}=-\frac{1}{2}-x+c e^{2 x}$
Using SNB to check, we have
$y^{\prime}+y=-x y^{3}$, Exact solution is: $\frac{1}{\sqrt{C_{1} e^{2 x}-x-\frac{1}{2}}}$

