MA 221 Homework Solutions Due date: February 5, 2015

pg. 61 - 62 Sec. 2.4 #10, 11, 13, 15, 17, 19, 23, 24, 25, 27a, 29

(Underlined Problems are to be turned in.)

In problems 9, 11, 13, 15, 17 and 19, determine whether the equation is exact. If it is, then solve it.

10.)
$$(2xy + 3)dx + (x^2 - 1)dy = 0$$

Computing partial derivatives we obtain:

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(2xy + 3) = 2x$$

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(x^2 - 1) = 2x \qquad \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \qquad \text{the equation is exact.}$$

Integration yields:

$$F(x,y) = \int M(x,y)dx = \int (2xy+3)dx = x^2y + 3x + f(y)$$

$$\frac{\partial F}{\partial y} = x^2 + f'(y) = x^2 - 1 \qquad \Rightarrow f'(y) = -1 \qquad \Rightarrow f(y) = \int -1dy = -y + C \qquad \Rightarrow \text{general}$$
solution is

Figure 5. For explicitly,
$$y = \frac{C-3x}{x^2-1}$$

11.)
$$(\cos x \cos y + 2x)dx - (\sin x \sin y + 2y)dy = 0$$

Computing partial derivatives we obtain:

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} (\cos x \cos y + 2x) = -\cos x \sin y,$$

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} (\cos x \cos y + 2x) = -\cos x \sin y,$$

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} (-(\sin x \sin y + 2y)) = -\cos x \sin y \qquad \Rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \qquad \text{the equation is exact.}$$

Integration yields:

$$F(x,y) = \int M(x,y)dx = \int (\cos x \cos y + 2x)dx = \sin x \cos y + x^2 + f(y)$$

$$\frac{\partial F}{\partial y} = -\sin x \sin y + f'(y) = -\sin x \sin y - 2y \qquad \Rightarrow f'(y) = -2y$$

$$\Rightarrow f(y) = \int -2ydy = -y^2 + c \qquad \Rightarrow \text{general solution is}$$

$$F(x,y) = \sin x \cos y + x^2 - y^2 = C$$

13.)
$$\left(\frac{t}{y}\right) dy + (1 + \ln y) dt = 0$$

Computing partial derivatives we obtain:

$$\frac{\partial M}{\partial t} = \frac{\partial}{\partial t} \left(\frac{t}{y} \right) = \frac{1}{y}$$

$$\frac{\partial N}{\partial y} = \frac{\partial}{\partial y} (1 + \ln y) = \frac{1}{y} \implies \frac{\partial M}{\partial t} = \frac{\partial N}{\partial y} \quad \text{the equation is exact.}$$

Integration yields:

$$F(y,t) = \int M(y,t) = \int \left(\frac{t}{y}\right) dy = t \ln y + f(t) = t \ln y + f(t)$$

$$\frac{\partial F}{\partial t} = \ln y + f'(t) = 1 + \ln y \qquad \Rightarrow f'(t) = 1$$

$$\Rightarrow f(t) = \int 1 dt = t + c$$

general solution is:

$$F(y,t) = t \ln y + t = C$$
, or explicitly, $t = \frac{C}{1 + \ln y}$

15.)
$$\cos\theta dr - (r\sin\theta - e^{\theta})d\theta = 0$$

Computing partial derivatives we obtain:

$$\frac{\partial M}{\partial \theta} = \frac{\partial}{\partial \theta} (\cos \theta) = -\sin \theta$$

$$\frac{\partial N}{\partial r} = \frac{\partial}{\partial r} (-(r\sin \theta - e^{\theta})) = \sin \theta \qquad \Rightarrow \frac{\partial M}{\partial \theta} = \frac{\partial N}{\partial r} \qquad \text{the equation is exact.}$$

Integration yields:

$$F(\theta, r) = \int M(\theta, r) = \int (\cos \theta) dr = r \cos \theta + f(\theta)$$

$$\frac{\partial F}{\partial \theta} = -r \sin \theta + f'(\theta) = -r \sin \theta + e^{\theta} \qquad \Rightarrow f'(\theta) = e^{\theta} \qquad \Rightarrow f(\theta) = \int e^{\theta} d\theta = e^{\theta} + C$$

$$F(\theta, r) = r\cos\theta + e^{\theta} = C$$
, or explicitly, $r = \frac{C - e^{\theta}}{\cos\theta} = (C - e^{\theta}) \sec\theta$

17.)
$$(\frac{1}{y})dx - (3y - \frac{x}{y^2})dy = 0$$

$$M_y = -\frac{1}{v^2}$$
 $N_x = \frac{1}{v^2}$ $M_y \neq N_x$ the equation is not exact.

19.)
$$\left(2x + \frac{y}{1+x^2y^2}\right)dx + \left(\frac{x}{1+x^2y^2} - 2y\right)dy = 0$$

Computing partial derivatives we obtain:
$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(2x + \frac{y}{1+x^2y^2} \right) = \frac{1+x^2y^2-2x^2y^2}{(1+x^2y^2)^2}$$

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x}{1+x^2y^2} - 2y \right) = \frac{1+x^2y^2-2x^2y^2}{(1+x^2y^2)^2} \implies \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad \text{the equation is exact.}$$

Integration yields:

$$F(x,y) = \int M(x,y)dx = \int \left(2x + \frac{y}{1+x^2y^2}\right)dx = x^2 + \arctan xy + f(y)$$

$$\frac{\partial F}{\partial y} = \frac{x}{1+(xy)^2} + f'(y) = \left(\frac{x}{1+x^2y^2} - 2y\right) \implies f'(y) = -2y \implies f(y) = \int -2ydy = -y^2 + C$$

solution is

$$F(x,y) = x^2 + \arctan xy - y^2 = C$$

In problems 23, 24, and 25, solve the initial value problem.

23.)
$$(e^t y + te^t y)dt + (te^t + 2)dy = 0$$
 $y(0) = -1$

$$M_y = e^t + te^t$$
 $N_t = te^t + e^t$ $\Rightarrow M_y = N_t$ the equation is exact.

$$F(y,t) = \int M_y dt = \int N_t dy = \int (te^t + 2) dy = tye^t + 2y + f(t)$$

$$\frac{\partial F}{\partial t} = ye^t + tye^t + f'(t) = e^t y + te^t y \qquad \Rightarrow f'(t) = 0 \qquad \Rightarrow F(y,t) = tye^t + 2y + c$$

$$\Rightarrow tye^t + 2y = C \qquad \Rightarrow y = C/(te^t + 2)$$

Using the initial condition:

$$y(0) = C/(0+2) = -1 \qquad \Rightarrow C = -2 \qquad \Rightarrow y = -2/(te^t + 2)$$

24)

$$(e^t x + 1)dt + (e^t - 1)dx = 0$$
 $x(1) = 1$

$$M_x = e^t = N_t$$

Therefore the equation is exact. Thus there exists f(t,x) such that

$$f_t = e^t x + 1 \text{ and } f_x = e^t - 1$$

Integrating the second equation w.r.t. to x we have

$$f(t,x) = xe^t - x + g(t)$$

Differentiating this w.r.t. t yields $f_t = xe^t + g'(t) = M = e^t x + 1$ Thus g(t) = t + C and

$$f(t,x) = xe^t - x + t + C$$

so the solution is given by

$$xe^t - x + t = K$$

The initial condition implies

$$e - 1 + 1 = K$$

so the solution is given by

$$xe^t - x + t = e$$

25.)
$$(y^2 \sin x) dx + (\frac{1}{x} - \frac{y}{x}) dy = 0, \quad y(\pi) = 1$$

Notice this equation is not exact. It is separable.

$$\int x \sin x dx = \int \frac{y-1}{y^2} dy$$

$$-x\cos x + \sin x = \ln y + \frac{1}{y} + C$$

Substituting the initial condition

$$-\pi \cos \pi + \sin \pi = \ln 1 + \frac{1}{1} + C$$

$$C = \pi - 1$$

$$-x\cos x + \sin x = \ln y + \frac{1}{y} + \pi - 1$$

- 27.) Find the most general function M(x, y) so that the equation is exact.
- (a) $M(x, y)dx + (\sec^2 y \frac{x}{y})dy = 0$

We want to find M(x, y) so that for $N(x, y) = (\sec^2 y - \frac{x}{y})$ we have

$$M_y(x,y) = N_x(x,y) = -\frac{1}{y}$$

Therefore, we must integrate this last expression with respect to y:

$$M(x,y) = \int (-\frac{1}{y}) dy = -\ln|y| + f(x),$$

where f(x) is the constant of integration, a function of only of x.

29.) Consider the equation

$$(y^2 + 2xy)dx - x^2dy = 0$$

(a) Show that the equation is not exact.

$$M_y = 2y + 2x, N_x = -2x => \text{not exact}$$

(b) Show that multiplying both sides of the equation by y^{-2} yields a new equation that is exact

$$y^{-2}(y^2 + 2xy)dx - x^2y^{-2}dy = 0$$

$$(1 + \frac{2x}{y})dx - \frac{x^2}{y^2}dy = 0$$

$$M_y = \frac{-2x}{y^2}, N_x = \frac{-2x}{y^2} \implies exact$$

(c) Use the solution of the resulting exact equation to solve the original equation.

$$F(x,y) = \int (1 + \frac{2x}{y}) dx$$

$$= x + \frac{x^2}{y} + g(y)$$

$$F_y = -\frac{x^2}{y^2} + g'(y) = -\frac{x^2}{y^2}$$

$$g'(y) = 0$$

$$g(y) = 0$$

$$x + \frac{x^2}{y} = C$$

$$y = \frac{x^2}{C - x}$$
(d) Where any solutions lost in the process?

Yes, by dividing both sides by y^2 we lost the solution $y = 0$.