
Measuring Architecture Quality by
Structure Plus History Analysis

Robert Schwanke
Siemens Corporation, Corporate Technology

Princeton, New Jersey, USA
robert.schwanke@siemens.com

Lu Xiao, Yuanfang Cai
Computer Science Department, Drexel University

Philadelphia, Pennsylvania, USA
{lx52, yc349}@drexel.edu

Abstract—This case study combines known software structure
and revision history analysis techniques, in known and new ways,
to predict bug-related change frequency, and uncover
architecture-related risks in an agile industrial software
development project. We applied a suite of structure and history
measures and statistically analyzed the correlations between
them. We detected architecture issues by identifying outliers in
the distributions of measured values and investigating the
architectural significance of the associated classes. We used a
clustering method to identify sets of files that often change
together without being structurally close together, investigating
whether architecture issues were among the root causes. The
development team confirmed that the identified clusters reflected
significant architectural violations, unstable key interfaces, and
important undocumented assumptions shared between modules.
The combined structure diagrams and history data justified a
refactoring proposal that was accepted by the project manager
and implemented.

Index Terms—measure, structure, change history, software
architecture, fault prediction

I. MOTIVATION AND BACKGROUND
Software architecture, the “fundamental concepts or

properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and
evolution” [7], often receives inadequate attention, especially
in agile software development. For example, the architecture
used in a small, agile project may comprise only a few
principles, kept in the heads of the developers. However, as
small projects grow up, they tend to postpone both architecture
specification and necessary restructuring, which then become
harder and harder as the code base grows, until the as-built
architecture has degraded so severely that it needs major
repairs. Sadly, the expense of restructuring is hard to justify —
until there is a crisis.

 This problem could be mitigated by explicitly tracking
“architectural debt” – architecture-related technical debt – so
that agile projects can decide when to pay some of it off.
However, architectural debt tends to hurt future project
sustainability much more than it does current functionality or
quality. Therefore, even known architectural issues tend to go
unresolved in the rush to deliver the next demo. When the crisis
finally happens, the development team needs ways to prioritize
the backlog of restructuring tasks, selecting which ones to
include in its architecture renovation plan.

In this paper, we report a case study of measuring
architecture quality and identifying architecture issues by
combining analyses of dependency structure and revision
history, following Wong, Cai, Kim and Dalton’s [23] work on
modularity violation detection through structure/history
contrast analysis. This combined analysis allowed us to detect
and locate architecture deviation/degradation, discover shared
but undocumented assumptions that cut across module
boundaries, correlate structural measures with faults and
change proneness, and support a restructuring proposal with
quantitative measurements and compelling diagrams. The
proposal was approved and implemented, cleaning up a large
number of the most fault-prone files.

This case study is part of an exploratory program in
architecture analysis and improvement techniques. We are
investigating the use of architecture-related software metrics
both for (a) predicting the locations and impacts of future bugs,
and for (b) uncovering and prioritizing current architecture
risks. (We use bug and fault interchangeably, except as noted.)
We conjecture that, once uncovered, mitigating a risk will also
reduce both the metrics that uncovered it and the corresponding
future bug impacts. If so, it would suggest that the metrics are
measuring aspects of architecture quality.

II. RELATED WORK
In this section, we review the related literature on structure

measures, history measures, and fault prediction, which form
the background for this research. For this case study, our focus
is not on constructing the perfect predictor but on finding the
most intuitive, easily obtainable measures that perform “well
enough”. We started with some representative measures,
chosen for convenience, and explored how to use them to
analyze software architecture. Future work will study tradeoffs
between convenience and usefulness of the measurements.

Size Measures. Size measures are typically used to measure
software productivity, predict fault locations for testing, and
predict maintenance effort. There are two major types of size
measures: 1) physical source lines of code which describe size
in terms of the physical length as it appears for people to read
(such as SLOC, NCLOC and KSLOC) and 2) logical source
statements, which characterize size in terms of number of
machine instructions or statements, such as DSI (delivered
source instructions), or KDSI.

Park [18] commented that “Nothing in this report should be
interpreted as implying that we believe one size measure is

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Software Engineering in Practice

891

more useful or more informative than another.” Based on the
assumption that different size measures are highly correlated to
each other, and in particular that measures of lines of code are
highly correlated with the number of bytes it takes to store
them in files, we chose file size (in kilobytes, KB) as our size
measure because it is widely available.

Complexity Measures. There are two types of complexity
measures: complexity of individual files, and complexity of
interconnections between files. McCabe complexity [11]
directly measures the number of linearly independent paths
through a program’s source code. Henry and Kafura [6] were
among the first to measure complexity by the fan-in and fan-
out of cross-references between files. The widely studied CK
metric suite proposed by Chidamber and Kemerer (CK) [3]
identifies six object-oriented metrics. MacCormack, Rusnak,
and Baldwin [10] measure the complexity (lack of modularity)
of a system’s dependency graph by its “propagation cost” and
its “clustered cost”. (“Cost” here refers to “path cost” in routing
algorithms, not to real-world cost.)

In our work, we are trying fan-in (the number of modules
that depend on a given module) and fan-out (the number of
modules that the given module depends on) to measure the
complexity of a file’s relationships to other files.

Change Measures. The main information sources for
measuring change are a project’s version control system and its
bug and task tracking system. The version control system
tracks all the information about what has been changed, when
and by whom. The bug and task tracking system records the
tasks carried out by the project team, classified into task types
such as bug-fix, new feature, or restructuring.

Mockus, Stephen and Karr [13] measured change by size
(LOC added/deleted and number of sub systems affected etc.)
and purpose. In our work, each time a given file is checked in
to the version control system, we count that as one change to
the file. We divide the change types into three categories: bug-
fixes, features, and unknown.

Effort and Impact Measures. Effort in software projects is
often measured by counting tasks, bug reports, file versions,
change sets, or staff hours. Although staff hours are the actual
units of effort in software projects, it is methodologically
impossible to allocate staff hours accurately to any of the other
units of impact above, because (a) real developers think about
multiple files, bugs, and tasks at the same time, (b) a
developer’s productivity fluctuates widely due to uncontrolled
variables in her environment, and (c) collecting the data relies
on the developer’s memory of how she spent her time. In this
case study, therefore, we treat one change (one file check-in) as
one unit of impact. Later, we will look into ways of allocating
staff hours to changes.

Types of Changes. Many project repositories record links
between change sets and the tasks for which the changes were
made, enabling analysis by type of task. However, this kind of
data often has poor quality [1], because the quality is hard to
check at time of capture. In our case study, for example, the
developers were expected, at time of check-in, to link each
change set to the bug and/or task tickets for which the changes
were made. However, the data revealed that some developers

had provided ticket links most of the time, some provided them
about half the time, and some rarely provided them at all, such
that, for about half of the changes, we do not know whether
they were bug-fixes or not. This did not make the exercise
invalid, but it highlighted the importance of watching for data
quality problems and adapting the analysis accordingly.

Software Fault Prediction from Project Repositories. The
work of Ostrand, Weyuker and Bell [16] is representative of a
wealth of research on how to analyze project development
repositories to predict which files will have faults in the future.
Their approach identifies a set of software metrics that
correlate well with future fault detection, builds a prediction
function out of them, based on negative binomial regression,
and fits the parameters of the function to historical data of the
project. They created a practical tool for prioritizing files to
undergo system tests based on the predicted number of
remaining bugs. Their tool consistently identifies 20% percent
of the files that contain 71% to 92% of the remaining faults.
They analyzed a wide variety of project types, differing in
programming languages, application domains, and corporate
divisions, etc. The tool is now in routine use in several ongoing
development projects at AT&T Research. Other approaches
use machine learning techniques to create classifiers that
separate fault-prone files from others.

Prediction Performance. The usual criteria for comparing
the performance of prediction methods include correlation,
accuracy, precision, and recall. Correlation is commonly used
when comparing predictions of scalar values, whereas
accuracy, precision, and recall are used to measure the
performance of classifiers [12] [24] [1] and information
retrieval methods. In fault prediction work, correlation is often
used to compare how well two methods predict the number of
faults in a file, and accuracy, precision, and recall are used to
compare how well two methods predict which files contain at
least one bug, and which do not.

Ohlsson and Alberg [14] were among the first to use
variants on the Pareto diagram to compare the performance of
fault prediction functions, calling theirs the Alberg diagram.
(The diagram notation dates back at least to 1905, to M. O.
Lorenz [9].) They also noted that the usual correlation
functions were not well suited for this comparison.

Fenton and Ohlsson [4] did an extensive study of faults and
failures in a large system, reporting quite a few surprising
observations such as the low correlation between bugs fixed
before release and failures that happened after release. The
biggest lesson from this study is that one must explore the data
at hand with only minimal prior assumptions, before applying
pre-defined analysis techniques to them.

Ostrand and Weyuker[17] noted that correlation is not a
sufficient performance measure because the precise number of
bugs found in a particular file is not as important as the relative
number of bugs found in one file vs. another, and total number
of bugs found in the set of files that one examines first.
Furthermore, both accuracy and precision statistics treat false
positives and false negatives as equally important, whereas in
bug prediction, the consequence of a false positive (testing a

892

file that has no bugs) is much less severe than the consequence
of a false negative (letting a buggy file escape into the field).

Instead, they specialize their performance measures to the
way that the predictor functions are intended to be used: the
files will be sorted according to their predicted number of bugs,
worst first (descending order), and tested for bugs in that order.
With that in mind, Ostrand and Weyuker advocate using two
performance measures for bug prediction methods: the
percentage of remaining faults found in the predicted-worst K
files, and the percentage of faulty files not found among the
predicted-worst K files.

Our work generalizes from this insight, focusing on three
performance measures all based on recall: faulty file recall,
fault recall, and fault impact recall, defined and discussed in
later sections.

Correlation and Regression Analysis of Count Data. Most
of the data we want to analyze fits the technical definition of
count data. Statisticians define “count variables” as random
variables whose values are restricted to the natural numbers
(non-negative integers) and represent counted items, not ranks
(e.g. 1st, 2nd, 3rd). Such data needs special treatments that are
unfamiliar to many, because (a) ordinary least squares (OLS)
regression behaves badly near zero, (b) many of the
distributions are binomial, Poisson-like, or exponential, and (c)
experimental data involving faults tends to be over-dispersed,
for example by having more zero values than a standard
Poisson distribution.

Therefore, we have refrained from using trend lines or OLS
regression on our count data. For correlation analysis we use
Kendall’s tau-b rank correlation measure[8]. For constructing
predictors; we will use negative binomial regression in our
future work (Cameron and Trivedi [2]).

Architecture Violation Detection. Sangal, Gordon, Sinha,
and Jackson [22] detect architecture deviations directly, by
detecting the dependencies that violate the designed
architecture structure. Their study focused on detecting
violations of syntactic dependency specifications. Based on the
assumption that the essence of software modularity is to allow
for independent module-wise evolution, Wong et al. [23] detect
modularity violations, supported by their tool, Clio, by
identifying change coupling that is not explained by Robillard’s
heuristic [20]. Schwanke and Hanson [21] identify modularity
errors by contrasting module membership with feature-based
similarity.

During software evolution, if two components often change
together to accommodate modification requests, but they
belong to two separate modules, Clio considers this a
modularity violation. Such violations may be caused, for
example, by side effects of a quick and dirty implementation,
or mismatches between requirements and the original
architecture design. Wong et al.’s preliminary work has
demonstrated the feasibility and utility of this approach in
Hadoop and Eclipse. They identified hundreds of apparent
violations in each studied system, and 40% to 66% of them
were conservatively confirmed, either by code inspection, by
subsequent changes, or by subsequent developer comments.
(They were not able to contact the developers to ask questions,

but used change logs and community discussion boards to find
confirming evidence.)

We re-implemented the Clio concept of contrasting design
coupling with change coupling, replacing certain academic
assumptions with their industrial counterparts.

III. CASE STUDY QUESTIONS
Although many structure metrics have been investigated for

quantifying software quality, the connection between structure
and quality is not yet firmly established. When project
managers are faced with these sorts of measures, or with
architecture deviation reports, the typical response is,

“What can I do with this information? There will always
be some modules with high complexity, coupling, fan-
out, or size. What will I gain by reorganizing them?
Why do I care if the code violates the architecture, as
long as it works?”

We hope that our answer will be,
“These surface measurements point to deeper quality
issues. Finding and fixing the quality problems will save
time and effort – and the surface symptoms will also go
away.”

We reasoned this way: if we can show that a structure measure,
say “fan-out”, applied to today’s code, correlates strongly with
future bug-related effort, then we know that the developer can
find bugs sooner by looking at files with high fan-out. It also
suggests (but does not prove) that high fan-out itself is a cause
of high bug-fix effort. Therefore, finding out why a file has
high fan-out could lead to an explanation for why it is prone to
high bug-fix effort. Furthermore, we can use this linkage to
justify fixing the problems we find. In this case study, we aim
to answer the following questions:

Q1. Does this combined structure/history measurement
reveal critical architecture issues that are worth fixing?

Q2. Are there any structure-based measures that can be
used to predict quality variation in the absence of adequate
revision history data?

Q3. What measurements could help the developers make
important architectural decisions, and how?

IV. CASE STUDY PROCEDURE
Our case study consisted of the following steps, with plenty

of overlap and backtracking:
1) Data collection: we obtained access to the project’s source

code version control system and its task and bug tracking
system.

2) Structure and history measurement: we selected and
adapted well-known, easily-understood measures.

3) Validation: we validated the measures on the project’s own
data, from releases 1 and 2, showing which measures were
good predictors of future faults.

4) Prediction: we used measurements from the first two
release cycles to predict the relative number of fault-
related changes to each file in the future (after release 2.0).

5) Uncovering architecture problems: we sorted the source
code files by predicted future faults, then

893

a) Inspected each of the most fault-prone files in a
graphical structure browser to see its role and
connections in the architecture, and

b) Clustered “distant” pairs of files (defined below) that
frequently changed together, inspecting each cluster
graphically to uncover potential structure problems.

6) Presenting findings: We presented our analysis to the lead
developers to find out which of the apparent problems
were significant risks for the project. This inspired them to
tell us about additional concerns.

7) Investigating developer concerns: we identified the
developers’ biggest concerns and combined our statistical
and structural information to investigate and quantify
them.

Notice that steps 5 to 7 rely heavily on human judgments. The
potential issues we identified provided the symptoms to the
experts, motivating them to do the deep analysis. We are not
looking to algorithms for solutions, only to help us find
problems. Solving them is, so far, still the job of humans.

V. CASE STUDY AND RESULTS

A. The Project and Its Data
The project we studied, code-named System J, is a two-year

old development project for an industrial software product in
an emerging product domain.

We chose the project because we had unusually good
access to project data and to the developers, but we tried to
treat the developers as (cooperative) customers. This meant that
we could not require that the developers spend time talking to
us, nor could we impose work on them if they didn’t want to do
it voluntarily. The project has had up to 20 developers involved
at any given time. It comprises about 300 KSLOC of Java in
900 files, in 165 Java packages. The system aggregates a
certain type of data from many sources and uses it to support
both market and operational decision-making at a time
granularity of minutes to hours. It has a service-oriented
architecture and a transactional database, both implemented
with third-party platform technologies.

The software is being developed with an agile project
discipline, where the project manager is also the customer
proxy. The sprints are usually two weeks long, the system is
rebuilt and automatically tested at least nightly, and each sprint
ends with a customer demo and a retrospective. Fixing their
bugs from the night before is usually each developer’s highest
priority. The entire software history is kept in a Mercurial [15]
repository, with only one main development branch. At the end
of each sprint, the current version of each file is tagged with the
sprint ID, so that it is possible to go back to each tagged set and
find the code for a complete system version that passed a
known set of automatic tests. Bug and task tracking data is kept
in a JIRA database (www.atlassian.com/JIRA). Every time
code is checked into Mercurial, the developer is expected to
insert tag(s) in the change log entry, mapping the set to JIRA
ticket(s).

We treated System J’s project and package structure as the
“as-built” subsystem decomposition tree. System J comprises

25 Java projects, each containing a tree of packages, each
containing multiple classes, each class in a separate file.

We extracted the case study data from the Mercurial, JIRA,
and Understand™ repositories and stored it in a PostgreSQL
object-relational database system. The database consists of 11
tables covering 4 aspects of project information: the file tables
(paths, fileinfo_sprint, fileinfo_release), the revision tables
(entries, commits, versions), the ticket tables (tickets and
solveticket) and the people tables (persons and aliases). This
database allows convenient exploration of the project data
using simple queries, such as the histogram of change set sizes,
or distribution of ticket types over time, as shown in Figure 1.

 This article contains many real examples from System J.
To protect company proprietary information, the domain-
specific words appearing in file names and graph labels have
been systematically replaced with words from the domain of
gardening.

B. Measures of Structure and History
 In this case study, we applied 6 single-file measures and 1

file-pair measure, all at the granularity of Java classes, with a
one-to-one correspondence between Java classes and source
code files. For each file f and each pair of files (f, g), we
measure:
1) File size: Source code file size of f in kilobytes.
2) Fan-in: the number of source code references from other

files to elements of f.
3) Fan-out: the number of source code references from f to

elements of other files.
4) Change frequency: number of times that f is checked in.
5) Ticket frequency: the number of different JIRA task and

bug tickets for which f was modified. This frequency is
also broken down by ticket type: bug, feature, or unknown.

Figure 1: Changes set sizes, ticket types

1

4

16

64

256

1024

5 10 15 20 25 30 35 More

Change Set Size Distribution

0%

25%

50%

75%

100%

v1.04 v1.06 v1.07 v1.08 v1.09 v1.0.1 v1.0.2 v2
Sprint

Ticket Type Distribution by Sprint Bug
Task
Other

894

6) Bug change frequency: the number of change sets that
contain f and reference at least one bug ticket.

7) Pair change frequency: the number of change sets in
which f and g both appear.

We chose the measures above to investigate first because
they were readily available, easily applied, and widely
understood.

C. Exploratory Data Analysis
To assure ourselves of the quality and relevance of the data,

we used several exploratory data analysis techniques, including
histogram inspection, scatter-plotting relationships, and
comparing two sets of the same kind of data from different
time intervals. The data we used spanned two development
cycles of the subject system, release 1 (R1) and release 2 (R2).
For some types of analysis we treated the changes during
release 1 as “the past”, the code structure at the end of release 1
as “the present”, and the changes during release 2 as well as the
structure at the end of release 2 as “the future”. For other
analyses we combined the changes in release 1 and release 2
into a single, large time interval (R1+R2), “the past”, using the
code structure at release 2 as “the present”, and subsequent
changes as “the future”. Here are some analysis examples,
which also begin to unfold the story of the data.

1) Distribution of Each Measure’s Values. We started by
looking at the distribution of each measure’s values. For
example, in Figure 2 we see a histogram of the number of
changes per file. (Note the logarithmic scale, used to conserve
column-inches.) It shows a typical exponential decay curve, up
to a frequency of about 60. Beyond that, we see about two
dozen “outliers” that change much more frequently than the
rest. All six single-file measures had similar histograms.

2) Scatter Plots of Relationships between Measures. The
first two measures for which we examined the outliers were
fan-in and fan-out. While the files with high fan-out tended to
be error-prone, those with high fan-in did not. Instead, they
were frequently infrastructure classes, with many instances or
many sub-classes, suggesting that “high fan-in” is
architecturally significant.

We used scatter plots to compare each of the 6 single-file
measures to each other. For example, the plot in Figure 3
shows a likely correlation between R1 fan-out and R2 change
frequency. However, this plot reminds us that we cannot use
the Pearson correlation measure, nor ordinary least squares
(OLS) regression, on this kind of data, because most of the data
points lie on or close to zero in some dimension.

Instead, we compute correlations using Kendall’s tau-b
rank correlation measure [8], which calculates the extent to
which two measures rank-order the same sample points in the
same order.

,
, ,
, ,

where and count the number of pairs of
entities that are in the same order (resp. opposite order) in
rankings F and G. The value of ranges from -1 (exactly the
opposite order) to +1 (exactly the same order), with zero
indicating no correlation. Pairs of points that have the same
value under either of the measures (“ties”) are ignored in the
calculation, and the correlation is not affected by how close or
far apart two points are in the two orderings.

Table 1 gives the correlations between each pair of single-file
measures, calculated over R1+R2. The table is ordered by how
closely each of the other measures correlated with bug change
frequency (bugs). It shows statistically significant correlations
(α<1%) between each pair of measures except those
highlighted, but the correlation is much weaker when one of
the measures is fan-in.

3) Comparing Release 1 with Release2. We compared R1
and R2 values of all six single-file measures (see Table 2), and
found that the R1 structure measures each had a strong

Figure 3. Scatter plot, suggesting correlation

0

20

40

60

80

100

0 20 40 60

R2
 C
ha

ng
es

R1 Fan‐Out

R2 Changes vs. R1 Fan‐Out

Table 1: Rank correlations between measures

R1+R2 fan‐in fan‐out size changes tickets bugs
fan‐in 1 ‐0.028 0.023 0.108 0.092 0.086
fan‐out ‐0.028 1 0.454 0.460 0.443 0.445
size 0.023 0.454 1 0.507 0.529 0.578
changes 0.108 0.460 0.507 1 0.628 0.659
tickets 0.092 0.443 0.529 0.628 1 0.941
bugs 0.086 0.445 0.578 0.659 0.941 1

Figure 2. Histogram, showing outliers

0.5

1

2

4

8

16

32

64

128

0 20 40 60 80 100 120 140 160 More

Changes

Histogram of File Change Frequency (R1+R2)

Outliers

895

correlation (greater than 0.90) with the same measurement in
R2, confirming that structure changes slowly. For history
measures, the same-measure correlations between R1 and R2
were not as strong, but still evident, ranging from .48 to .66.
These correlations give us some confidence that each measure
can at least predict future values of itself.

We also took an advance peek at how well these measures
could predict bug-related changes. The correlations “vs. bugs”
in the table above show that the R1 values of each of them has
a significant correlation with R2 bug-related changes, and that,
except for fan-in, the correlations are competitive with each
other.

From inspecting the scatter-plots and histograms and
calculating the correlations, we inferred that all of the 6 single-
file measures were sufficiently well-behaved to be suitable for
the next step, except that fan-in would be a poor predictor of
bugs. By contrast, most of the pair change coupling measures
we looked at were ill-behaved or hard to relate to practical
tasks. We decided to use only pair change frequency at first,
and revisit the other pair change measures later.

D. Validation on Project Data
Extending the approach of Ostrand and Weyuker [17], we

chose three variations of information retrieval’s recall measure
as the primary bug-prediction performance measures. We
assume that the software measure whose performance is being
evaluated will be used to sort the files, “worst first”, after
which the developers will test or examine the first K files to
look for faults. Recall is defined as the fraction of the relevant
‘instances’ that are ‘retrieved’ by examining those K files. The
value of K is uncertain, because it will depend on available
resources and competing tasks, so the measure should perform
well over a wide range of values for K. Therefore, the
performance of a bug prediction method is the area under its
recall curve. The three variations differ by what an ‘instance’
is:

Faulty file recall. An ‘instance’ is a file that is changed (in
the future) at least once due to any bug ticket, but additional
bug tickets and additional changes don’t count extra.

Fault recall. An ‘instance’ is a pair <file, bug ticket>,
where the file is changed at least once due to that bug ticket.
Additional changes due to the same ticket don’t count extra.

Fault impact recall. An ‘instance’ is a triple <file, change
set, bug ticket>, where the file is a member of the change set
and the change set is associated with the bug ticket. If a file is
checked in several times due to the same bug ticket, each time
is a separate instance.

Fault recall puts more emphasis (compared to faulty file
recall) on files with multiple faults than on files with just one
fault. Fault impact recall puts even more emphasis on faults
that are hard to fix (inducing multiple check-ins).

The validation process calculated the measures on R1 data
and used them to predict bugs that were found in R2. It then
plotted each measure’s R2 recall curve for each of the three
recall performance measures. Figure 4 shows the R2 fault
impact recall curves. These curves are Alberg diagrams [14].
(Out of 528 files, the grid line at 106 represents the first 20% of
the files. The graph stops at 264 files (50%) to save column-
inches, without loss of insight.)

Each colored curve on the chart represents sorting the files
according to a different measure, for example, decreasing size,
decreasing fan-out, decreasing past bugs, etc. A given point
<X,Y> on curve Z means that, when sorted according to
measure Z, the first X files will incur Y% of the total R2 bug-
related changes.

The top curve, labeled “Oracle”, represents the best
possible performance, achievable only if the files are sorted in
descending order of R2 bug-related changes. The remaining
curves are closely spaced. Each of them shows 70% to 80%
bug impact recall with the first 20% of the files. This
performance is consistent with the findings of Ostrand,
Weyuker, and Bell [16].

Combining the measures was a little better than using just
one. Median R1 Rank looked at each file’s rank with respect to
code size, fan-out, and past changes, and used the median value
of these three ranks to sort the files. Thus sorted, 20% of the
files accounted for about 80% of the R2 bug-related changes.

We also compared the performance of these measures for
fault recall and faulty file recall. The spacing and ordering of

Table 2: Rank Correlations: R1 vs. R2

R1 vs. R2 vs. same measure vs. bugs
fan‐in 0.921 0.171
fan‐out 0.942 0.508
size 0.902 0.598
changes 0.478 0.586
tickets 0.650 0.648
bugs 0.661 0.661

Figure 4: R2 fault impact recall

0

10

20

30

40

50

60

70

80

90

100

0 53 106 158 211 264

R
2
 F
au
lt
 Im

p
ac
t
R
e
ca
ll
 (P
e
rc
e
n
t)

First K Files (out of 528)

R2 Fault Impact Recall

Oracle (R2 Bug‐related Changes)

Median R1 Rank

R1 Changes

R1 File size

R1 Bug‐related Changes

R1 Bug Tickets

R1 Fan‐out

896

the curves varied little, but the curves for faulty file recall were
lower: the top 20% of the files by each stand-alone measure
identified only 50-60% of the buggy files.

Doing less well on the faulty file recall measure is not
surprising, because a file with only a single fault has little
effect on the other performance measures, but has the same
effect as a file with a dozen faults or a hundred bug changes
under the faulty file recall performance measure.

This analysis gives us optimism that ranking the System J
files according to one or more of the top 5 measures will give a
good order to look at the files. Although it is tempting to draw
further inferences, these experiments did not analyze nearly
enough data to distinguish among the top 5 measures, and,
since they only involved one project, do not tell us what to
expect on other projects.

Further research will be needed to create an optimized
composite measure, presumably using negative binomial
regression, and measure its performance.

E. Uncovering Architecture Problems
Having confirmed that the R1 measures predict R2 faults,

we next used them to discover architecture issues by: analyzing
outliers; visualizing their positions within the architecture; and,
clustering “distant” files that frequently changed together.

Since we would need the developers’ knowledge and good
will to complete the analysis, we could no longer treat a date in
the past (the end of R1) as if it were “the present”. Since the
analysis took place at the time that R2 actually ended, we
tabulated the measures on R1+R2 and used them to predict
where faults would be found in the next release, “R3”. We
would judge our success solely by the developers’ reactions
and follow-up actions.

1) Outlier Analysis – Individual Files. Table 3 lists the
predicted fault-prone files “worst first”, sorting them according
to the median of their ranks by R1+R2 fan-out, size, and
change frequency.

First, we noticed that at the very top of the list, all five
measures seem to agree. The top 8 files were ranked among
the top 14 by every measure.

The first time we tried to present such results to the
developers, to elicit feedback, we just showed them a list like
this and asked them to comment on each of the top 10 or so.

However, we found that staring at lists of file names and
measure data was overwhelming; the developers gave us little
response. So, before going back to them, we tried investigating
the top few files ourselves, using a graphical structure browser.

2) Structure Browsing with Understand™. Scientific
Toolworks, Inc. makes a static code analysis tool called
Understand™. It creates a database of code structure and cross-
reference information, processes queries on this information,
and renders the results using Graphviz, a popular, free graph
drawing engine originally developed at AT&T Research.
Understand’s structure diagrams render files and dependencies
as boxes and arrows, and render sub-system structure as nested
boxes. Its graph browsing user interface provides a convenient
way to incrementally refine a query until you get the diagram
you want.

Using this tool, we would analyze a file by creating a
diagram that included the file itself and all of its immediate
neighbors in the cross-reference model, including the packages
in which these files are located. Showing the enclosing
packages provides guidance for analysts who are unfamiliar
with some of the files.

Such a diagram can then be further customized, e.g., by
adding neighbors-of-neighbors, to help the code expert
discover or remember what was causing the file to be fault-
prone. We found that showing such diagrams to the code
experts elicited many more comments than the lists of data
alone. Sometimes the comments were directly related to the
diagram at hand, but sometimes the diagram reminded the
developer of another issue, not seen in the diagram at all. The
point is that helping the developers visualize structure was an
effective problem elicitation method.

By this method, we were able to discuss many of the most
fault-prone files with the developers and, in most cases, either
draw their attention to a problem they hadn’t noticed, or give
them concrete evidence of a problem they had already
suspected. In two cases, however, the developers stood their
ground, saying that, although the structure looked suspicious, it
was necessary for the job that the class in question was doing.

3) Outlier Analysis – Pairs and Clusters. In addition to
measuring individual files, we investigated the structure and
history of pairs and clusters of files. According to Parnas [19],
the decomposition of a system should be based on mature,
stable design decisions and should encapsulate known future
variabilities, so that the impact of each kind of future change is
as limited as practical.

We first applied the approach of Wong et al. [23] to System
J, unmodified, but encountered several challenges. First, Clio’s
algorithm assumes that each change originated in a “starting
change set” and was propagated to others. However, in reality,
when developers commit changes, the “starting change set”, if
it exists, is only in the developer’s mind and there is no way for
us to determine later what it was.

Second, Clio’s definition of modules, that is, structural
proximity, was based on a transitive closure of Robillard’s
relevancy heuristic, weighted by path length. However, the
heuristic itself was hard to explain, and not experimentally
validated by Wong.

Table 3: Most error-prone files, by median R1 rank.

file fan-out size changes bugs tickets
Che 8th 5th 3rd 1st 1st
Fig 6th 7th 2nd 4th 2nd
Yew 1st 4th 1st 5th 7th
Abiu 2nd 8th 11th 2nd 3rd
Bael 5th 12th 5th 3rd 6th
Date 11th 6th 12th 7th 5th
Duku 4th 10th 9th 8th 8th
Imbe 3rd 14th 4th 9th 9th
Lime 51st 19th 13th 6th 4th
Neem 160th 11th 7th 11th 11th

897

We also realized that, in industrial settings, each project –
indeed, each developer – may have a slightly different way of
mapping code structures, files and folders to modules and
subsystems. We should first agree on what a module is, before
presenting the “modularity violations” to the developers.

 To overcome the challenge of not having the “starting
change set”, we chose to ignore the question of which file or
files “caused” a change, and simply counted the frequency with
which pairs of files changed together. To avoid conflicting
definitions of “module”, we used the project’s own definition,
namely, that a Java package is a module.

We then defined structural proximity in terms of “local”
and “distant” change pairs: a change pair <X,Y> is considered
“local” if (a) class X depends directly on class Y, or Y depends
on X, or (b) X and Y belong to the same Java package.
Otherwise they are considered “distant”. This definition will
be refined in future research to consider dependency path
lengths greater than 1 and to consider nested packages.

Based on these two modifications, we used a simple “single
link” clustering algorithm to group distant change pairs: the
similarity between two distant files was defined to be their joint
change frequency, provided that the frequency exceeded a
specified threshold. Each file that was part of at least one
frequent, distant change pair was placed in the same cluster as
the distant file with which it changed most frequently. After all
distant file pairs were thus clustered. Any remaining files were
then added to existing clusters based on local rather than distant
change pair frequencies. (Exploration of better clustering
algorithms is left to future work.)

For each cluster, we generated a structure diagram
containing the cluster members themselves and their shared
neighbors in the dependency graph. These diagrams give a
sense of how severely a cluster cross-cuts the layer-dependency
architecture. Their shared neighbors give hints about why they
are frequently changed together.

For example, Figure 5 shows the four files (highlighted in
yellow) that made up the three most frequent, distant change
pairs in System J, along with five of their shared neighbors
(colored lavender) in the dependency graph. Two of the files
belong to RestEJB and two belong to Yew. Together, the four
files and the five shared neighbors span four of the five main
system layers. This suggests that the changes have been
rippling across many, far-flung parts of the system.

In another cluster (not shown), a file in the Entry Points
layer was changing jointly with several key files in the
DataAccess package. That Entry Point file was also ranked
number one in the whole system by fan-out. It looked as if
changes in the Data Access layer were propagating to this
Entry Point file, suggesting that some critical architectural
interfaces are not stabilized. This observation eventually led to
the renovation task described in the next section.

We also inspected the source code of the most-frequently
changed pairs, to see if the reasons they were changing together
were obvious. Some example reasons we found were: cloned
code; logic moving from one file to the other; and shared
dependencies that caused them to receive the same propagated
changes.

 In two cases we found shared, unencapsulated assumptions
about the representation of time. In one case, the changes
happened when the granularity of time changed from minutes
to milliseconds. In another case, the representation of time
intervals split into two forms: “[a,b)” and “(a,b]”. (That is, both
forms are half-open, but one is open at the beginning and the
other is open at the end.

Although space does not allow us to describe these
examples more fully, in most cases we found a definite cause
for the files changing together that was not documented and not
readily detected by dependency analysis. Therefore, unusually
high joint change frequency data, in the absence of syntactic
“explanations”, seemed to be significant and useful
information.

F. Investigating a Developer Concern
In the course of discussing the R1+R2 outliers with the

developers, they began volunteering information about their
own architectural concerns. We chose a few of those concerns
to investigate, producing measurements and diagrams to
quantify and illustrate them. For example, a senior developer
noticed that several of the most fault-prone files belonged to

Figure 5. Three most frequent, distant change pairs

898

the same entry-point package, and mentioned that there was “a
lot” of business logic being written in the entry point layer
instead of the business logic layer. We used the layer-
dependency model to investigate and illustrate the problem, as
shown in Figure 6, where (we were told) all of the connections
from RestEJB to dao-SIMPLE and dao-Carob violate the
architecture. We found a total of 8 files with many of the same
violations. One consequence was that the misplaced business
logic was not being adequately tested in the nightly builds,
because the test driver bypassed the entry-point layer to test the
business logic directly. Inadequate testing in turn led to late
detection of bugs and many bug-related changes. The root
cause was inadequate architecture awareness by junior
developers. The senior developer wrote a small renovation
proposal, using our data and diagrams to justify the work of
moving the business logic to the proper layer. After the
proposal was approved and the renovation completed, many of
the top 50 fault-prone files had been moved, split, or deleted, in
order to move the business logic to the proper layer.
Afterwards, the senior developer asked to see the dependency
diagram again, after the clean-up – and spotted a faulty file she
had overlooked!

Note that our measurement methods did not, by themselves,
diagnose the problem. Also, the moving, splitting, and deleting
were only side-effects of the clean-up. It was the synergy
between measurement, prediction, visualization, and expert
insight that led to a successful renovation.

VI. DISCUSSION OF RESULTS

A. Answering the Case Study Questions
Q1. Does this combined structure/history measurement

reveal critical architecture issues that are worth fixing?
Indeed, by combining evolution history information with

file dependency structure, we were able to identify the
following types of issues. First, there are key interface files that
are supposed to be stable and correct, but actually have faults
and change frequently. Second, frequent, distant change pairs
often correspond to important architecture weaknesses or
violations. Third, structure gives us a visual context for
analyzing change associations found in the history, discovering
important, but undocumented shared assumptions that should
be made explicit.

Q2. Are there any structure-based measures that can be
used, without history, to predict quality variation?

For System J, size and fan-out were each fairly good stand-
alone predictors of fault-proneness. When a large file also has
high fan-out, it should be examined for accidental complexity
and architecture violations. Although fan-in was not a good
predictor of quality, high fan-in files did tend to be
architecturally- significant infrastructure classes.

Q3. What measurements could help the developers make
important architectural decisions, and how?

In addition to the well-known measures we set out to apply,
we discovered several helpful evaluation techniques. Outlier
investigation was a good way to find low-hanging, bad-
smelling fruit. Predicting fault-proneness helped to prioritize

architecture risks. Clustering distant change pairs seemed to
bring together locality violations with the same root cause.

B. Visualizing Structural Concerns
Although the software metric outliers often pointed to

architecture issues, we had trouble getting the developers’
attention until we showed them layer-dependency diagrams
that illustrated the problems. These diagrams also elicited other
architecture issues we had not yet found. From this experience
we are convinced that interactive, visual architecture models
are essential for analyzing and communicating architecture
issues.

C. Overcoming Dirty Data
The incomplete data linking change sets to JIRA tickets

confirmed the discoveries of others, but it also suggested its
own solution(s). Future studies should check for such problems
early, check correlations between change types, developer
habits, and other measurable attributes, then tailor the
prediction functions to account for them.

D. Novelty and Effectiveness
 To our knowledge, this is the first case study that

demonstrates the applicability and utility of both combining
and contrasting structure and history measurements in a
realistic industrial setting. The clustering algorithm, adapted

Figure 6. Entry point class with business logic

899

from Wong et al.’s work, makes it possible to apply modularity
violation detection techniques in a practical way. Our case
study is effective in that the experiment had minimal
disturbance to development process. Instead, all the measures
and data mining and analysis were accomplished independently
and we only reported to the team when our analysis suggested
suspicious problems. Finally, since System J uses JIRA and
Mercurial, which are both popular project support tools, we
expect that the approach is repeatable on other projects using
similar tools.

E. Assumption and Limitations
 This work is limited first because we only studied one

project, and we cannot claim that the result can be generalized
to other projects with different domains or using different tools
or languages. We only used the simplest structure and history
measures. In the future, we plan to apply more advanced
measures, such as conditional change probability, shortest
directed/undirected dependency path, age-weighted history
measures, and betweenness centrality [5].

VII. CONCLUSION
We have reported one case study of measuring code

structure and history to identify architecture problems in an
industrial project. It demonstrated the effectiveness of the
combination by enabling developers to visualize the
architectural roles and impact scope of files with high fault and
change frequency, which justified and supported a successful
renovation task.

ACKNOWLEDGMENT
This work was supported in part by the National Science

Foundation under grants CCF-0916891, CCF-1065189 and
CCF-1116980.

REFERENCES
[1] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V.

Filkov, and P. Devanbu, “Fair and balanced? Bias in bug-fix
datasets,” ESEC-FSE’09, August 23–28, 2009, Amsterdam, The
Netherlands.

[2] A.C. Cameron, and P.K. Trivedi (1998). Regression Analysis of
Count Data. Cambridge University Press. ISBN 0-521-63201-3

[3] S.R. Childamber, and C.F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol.20, pp. 476-493, 1994

[4] N. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on
Software Engineering, vol. 26, pp. 797-814, August 2000.

[5] L. Freeman (1977). "A set of measures of centrality based upon
betweenness,” Sociometry 40: 35–41

[6] S. M. Henry, and D. Kafura, "Software structure metrics based
on information flow," IEEE Transactions on Software
Engineering, vol. 7, pp. 510-518, 1981.

[7] Institute of Electrical and Electronics Engineers. Systems and
Software Engineering – Architecture description. (ISO/IEC/
IEEE Std 4210:2011). New York, NY: Institute of Electrical and
Electronics Engineers, 2011. Also iso-architecture.org/42010/

[8] M. Kendall, "A new measure of rank correlation," Biometrika 30
(1–2): 81–93, 1938.

[9] M.O. Lorenz, "Methods of measuring the concentration of
wealth," Publications of the American Statistical Association
(Publications of the American Statistical Association, Vol. 9,
No. 70) 9 (70): 209–219, 1905.

[10] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the
structure of complex software designs: an empirical study of
open source and proprietary code,” Manage. Sci., vol. 52, pp.
1015–1030, July 2006.

[11] T. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308–320, Dec. 1976.

[12] T. Menzies, J. Greenwald, and A. Frank, “Data mining static
code attributes to learn defect predictors,” IEEE Transactions on
Software Engineering, vol. 33, pp. 2-13, January 2007.

[13] A. Mockus, G. E. Stephen, and A. F. Karr, “On measurement
and analysis of software changes,” 1999.

[14] N. Ohlsson and H. Alberg, “Predicting fault-prone software
modules in telephone switches,” IEEE Transactions on Software
Engineering, vol. 22, pp. 886-894, December 1996.

[15] B. O’Sullivan, Mercurial: The Definitive Guide. O’Reilly
Media: 2009.

[16] T.J. Ostrand, and E.J. Weyuker, and R.M. Bell, “Predicting the
location and number of faults in large software systems,” IEEE
Transactions on Software Engineering, vol 31, pp. 340-355,
April, 2005.

[17] T.J. Ostrand, and E.J. Weyuker, “How to measure success of
fault prediction models,” SOQUA ’07 Fourth international
workshop on Software quality assurance, pp. 25-30, 2007.

[18] R. Park, "Software size measurement: a framework for counting
source statements," Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, Technical Report
CMU/SEI-92-TR-020, 1992.

[19] D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” CACM, 15(12):1053–8, Dec. 1972.

[20] M. P. Robillard. “Topology analysis of software dependencies,”
TOSEM, 17(4):18:1–18:36, Aug. 2008

[21] R.W. Schwanke and S.J. Hanson, “Using neural networks to
modularize software,” Journal Machine Learning, vol.15, pp.
137-168, May 1994.

[22] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using
dependency models to manage complex software architecture,”
In Proc. 20th OOPSLA, pages 167–176,Oct. 2005.

[23] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software
modularity violations,” Proceedings of the 33rd International
Conference on Software Engineering, pp. 411-420, 2011.

[24] T. Zimmermann, and N. Nagappan, “Predicting defects using
network analysis on dependency graphs,” ICSE ’08. 30th
International Conference, pp. 531-540, May 2008.

900

