
This text is based on the following books:

- "Introduction to Real Analysis" by A.N. Kolmogorov and S.V. Fomin
- "Linear Algebra and Analysis" by Marc Zamansky

I have intentionally made several mistakes in this text. The first homework assignment is to find them.

66 Uniform continuity

The definition of continuity of a mapping f of a metric space (E, d) into a metric space (F, δ) is the same as that given in the case of two arbitrary topological spaces. However we can now define the concept of uniform continuity.

Definition 66.1. Let f be a mapping of a metric space (E, d) into a metric space (F, δ). f is said to be uniformly continuous if for each $\varepsilon > 0$ we can find $\alpha(\varepsilon) > 0$ such that if $d(x, x') < \alpha$ then $\delta(f(x), f(x')) < \varepsilon$.

Example 66.1. If f is uniformly continuous it is continuous, but the converse is false. For example, the continuous mapping of \mathbb{R}^+ into \mathbb{R}^+ defined by $x \to 1/x$.

There are cases where continuity implies uniform continuity. These depend on topological properties of the space (E, d). For example, let us prove the following result:

Theorem 66.1. Let f be a mapping of a compact metric space (E, d) into a metric space (F, δ). if f is continuous it is uniformly continuous.

Proof. Let $\varepsilon > 0$. To each $x \in E$ we assign an open ball $B(x, r_x)$ of center x and radius r_x such that if $x' \in B(x, r_x)$, $\delta(f(x'), f(x)) < \varepsilon/2$. This may be done since f is continuous.

Consider the open balls $B(x, r_x/2)$. They cover E and, since E is compact, include a finite cover $B(x_i, r_{x_i}/2)$.

1
Let
\[m = \inf \left(r_{x_1} / 2 \right) \]
and consider two points \(x, x' \) of \(E \) such that \(d(x, x') < m \). The point \(x \) is contained in a certain ball \(B(x_i, r_{x_i}/2) \) and we have
\[d(x', x_i) \leq d(x', x) + d(x, x') < m + r_{x_i}/2 \leq r_{x_i} \]
It follows that \(x' \in B(x_i, r_{x_i}) \). We now have
\[\delta(f(x'), f(x)) < \delta(f(x'), f(x_i)) + \delta(f(x), f(x_i)) < \varepsilon \]
since \(x' \) and \(x \) belong to \(B(x_i, r_{x_i}) \).

Example 66.2. Let us consider a continuous function defined by distance. The distance \(d(x, A) \) of a point \(x \) from a subset \(A \) of a metric space \(E \) is defined by
\[d(x, A) = \inf_{y \in A} d(x, y) \]
We will prove that the function \(x \to d(x, A) \) is uniformly continuous on \(E \) for every set \(A \).

\(d(x, A) \) being the lower bound of the \(d(x, u) \) for \(u \in A \), given \(\varepsilon > 0 \) there exists a \(u_0 \in A \) such that
\[d(x, A) \leq d(x, u_0) < d(x, A) + \varepsilon \]
Let \(y \) be another point of \(E \). We have
\[d(y, u_0) \leq d(y, x) + d(x, u_0) < d(y, x) + d(x, A) + \varepsilon \]
and since
\[d(x, A) = \inf_{u \in A} d(y, u) \leq d(y, u_0) \]
it follows that
\[d(y, A) \leq d(y, x) + d(x, A) + \varepsilon \]
Since \(\varepsilon \) is arbitrary there results
\[d(y, A) \leq d(y, x) + d(x, A) \]
and interchanging \(x \) and \(y \)
\[d(x, A) \leq d(x, y) + d(y, A) \]
Thus for each subset A and arbitrary points x, y of E we have

$$|d(x, A) - d(y, A)| < d(x, y)$$

which establishes the uniform continuity of the function $x \to d(x, A)$.

67 Extension by continuity

The following question arises in a natural way. If E and F are two spaces, A a dense subspace of E, and ϕ a continuous mapping of A into F, is there a mapping f of E into F which is continuous in E and whose restriction to A is ϕ?

This question can be posed more graphically as follows: if f is a continuous mapping of E into F and A is dense in E can f be reconstituted from its restriction ϕ to A?

The solution of this problem is called the \textit{extension of ϕ from A to E by continuity}. This, in fact, can be done if we impose some quite general conditions satisfied by metric spaces (which are separated and normal).

We first prove the following statement:

\textbf{Proposition 67.1.} If f and g are two continuous mappings of a space E into a separated space F, and are equal at the points of a dense subset A of E, then they are equal everywhere in E.

\textit{Proof.} For, if $x \in E$ is adherent to A, $f(x)$, the limit of $f(\xi)$ when ξ tends to x, is also the limit when ξ tends to x in A. Since $f(\xi) = g(\xi)$ for $\xi \in A$, and F is separated, the limits of f and g at each point $x \in E$ are equal. \hfill \square

Now let ϕ be a mapping of a set A which is dense in E, into a separated space F. In order to be able to extend ϕ to E we must suppose that when $\xi \in A$ tends to $x \in E$, $\phi(\xi)$ has a limit, which we shall denote by $f(x)$. (If E is a metric space we can say that for every sequence (ξ_n) of elements of A converging to $x \in E$, $\phi(\xi_n)$ must have a limit, and this limit must be the same for every such sequence (ξ_n).) We now prove the following theorem:

\textbf{Theorem 67.1.} Let A be a dense subspace of a space E, F a normal space, and ϕ a mapping of A into F such that for every $x \in E$, $\phi(\xi)$ has a limit $f(x)$ in F when $\xi \in A$ tends to x. Then the function f is continuous in E.

\textit{Proof.} See the proof of Theorem 38.1 \hfill \square
68 Contraction mapping

68.1 The fixed point theorem

Let A be a mapping of a metric space R into itself. Then x is called a fixed point of A if $Ax = x$, i.e. A carries x into itself. Suppose there exists a number $\alpha < 1$ such that

$$\rho(Ax, Ay) \leq \alpha \rho(x, y)$$

for every pair of points $x, y \in R$. Then A is said to be a contraction mapping. Every contraction mapping is automatically continuous, since it follows from the "contraction condition" ($\rho(Ax, Ay) \leq \alpha \rho(x, y)$) that $Ax_n \to Ax$ whenever $x_n \to x$.

Theorem 68.1. (Fixed point theorem). Every contraction mapping A defined on a complete metric space R has a unique fixed point.

Proof. Given an arbitrary point $x_0 \in R$, let

$$x_1 = Ax_0, \quad x_2 = Ax_1 = A^2x_0, \ldots, \quad x_n = Ax_{n-1} = A^nx_0, \ldots$$

where $A^2x = A(A(x))$, $A^3x = A(A^2x) = A(A(A(x)))$, etc.

Then the sequence $\{x_n\}$ is fundamental. In fact, assuming to be explicit that $n \leq n'$, we have

$$\rho(x_n, x_{n'}) = \rho(A^n x_0, A^{n'} x_0) \leq \alpha^n \rho(x_0, x_{n' - n})$$

$$\leq \alpha^n [\rho(x_0, x_1) + \rho(x_1, x_2) + \cdots + \rho(x_{n' - n - 1}, x_{n' - n})]$$

$$\leq \alpha^n \rho(x_0, x_1)[1 + \alpha + \alpha^2 + \cdots + \alpha^{n' - n - 1}]$$

$$< \alpha^n \rho(x_0, x_1) \frac{1}{1 - \alpha}$$

But the expression on the right can be made arbitrary small for sufficiently large n, since $\alpha < 1$. Since R is complete, the sequence $\{x_n\}$, being fundamental, has a limit

$$x = \lim_{n \to \infty} x_n$$

Then, by continuity of A,

$$Ax = A \lim_{n \to \infty} x_n = \lim_{n \to \infty} Ax_n = \lim_{n \to \infty} x_{n+1} = x$$

This proves the existence of a fixed point x. To prove the uniqueness of x we note that is

$$Ax = x, \quad Ay = y$$

then by definition of contraction mapping

$$\rho(x, y) \leq \alpha \rho(x, y)$$

But then $\rho(x, y) = 0$ since $\alpha < 1$, and hence $x = y$\]
Remark. The fixed point theorem can be used to prove existence and uniqueness theorems for solutions of equations of various types. Besides showing that an equation of the form $Ax = x$ has a unique solution, the fixed point theorem also gives a practical method for finding the solution, i.e. calculation of the "successive approximations" ($x_n = A^n x_0$). In fact, as shown in the proof, the approximations actually converge to the solution of the equation $Ax = x$. For this reason, the fixed point theorem if often called the method of successive approximations.

Example 68.1. Let f be a function defined on the closed interval $[a, b]$ which maps $[a, b]$ into itself and satisfies a Lipschitz condition

(1) $$|f(x_1) - f(x_2)| \leq K|x_1 - x_2|$$

with constant $K < 1$. Then f is a contraction map, and hence, by Theorem (68.1), the sequence

(2) $$x_0, x_1 = f(x_0), x_2 = f(x_1), \ldots$$

converges to the unique root of the equation $f(x) = x$. In particular, "contraction condition" (1) holds if f has a continuous derivative f' on $[a, b]$ such that

$$|f'(x)| \leq K < 1$$

Example 68.2. Consider the mapping A of n-dimensional space into itself given by the system of linear equations

(3) $$y_i = \sum_{j=1}^{n} a_{ij}x_j + b_i \quad (i = 1, \ldots, n)$$

If A is a contraction mapping, we can use the method of successive approximations to solve the equation $Ax = x$. The condition under which A is a contraction mapping depend on the choice of metric. We now examine three cases:

1. The space R^n_0 with metric

$$\rho(x, y) = \max_{1 \leq i \leq n} |x_i - y_i|$$

In this case,

$$\rho(y, \tilde{y}) = \max_i |y_i - \tilde{y}_i| = \max_i \left| \sum_j a_{ij}(x_j - \tilde{x}_j) \right|$$

$$\leq \max_i \sum_j |a_{ij}| |x_j - \tilde{x}_j|$$

$$\leq \max_i \sum_j |a_{ij}| \max_j |(x_j - \tilde{x}_j)| = (\max_j \sum_i |a_{ij}|) \rho(x, \tilde{x})$$
and the contraction condition is now

\[\sum_{j} |a_{ij}| \leq \alpha < 1 \ (j = 1, \ldots, n) \]

2. The space \(R^n_1 \) with metric

\[\rho(x, y) = \sum_{i=1}^{n} |x_i - y_i| \]

Here

\[\rho(y, \tilde{y}) = \sum_{i} |x_i - \tilde{y}_i| = \sum_{i} \left| \sum_{j} a_{ij}(x_j - \tilde{x}_j) \right| \]
\[\leq \sum_{i} \sum_{j} |a_{ij}| |(x_j - \tilde{x}_j)| \]
\[\leq (\max_{i} \sum_{j} |a_{ij}|) \rho(x, \tilde{x}) \]

and the contraction condition is now

\[\sum_{j} |a_{ij}| \leq \alpha < 1 \ (j = 1, \ldots, n) \]

3. Ordinary Euclidean space \(R^n \) with metric

\[\rho(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]

Using the Cauchy-Schwarz inequality, we have

\[\rho^2(y, \tilde{y}) = \sum_{i} \left(\sum_{j} a_{ij}(x_j - \tilde{x}_j) \right)^2 \leq \left(\sum_{i} \sum_{j} a_{ij}^2 \right) \rho^2(x, \tilde{x}) \]

and the contraction condition becomes

\[\sum_{i} \sum_{j} a_{ij}^2 \leq \alpha < 1 \]
Thus, if at least one of conditions (4-6) holds, there exist a unique point \(x = (x_1, x_2, \ldots, x_n) \) such that

\[
x_i = \sum_{i=1}^{n} a_{ij} x_j + b_i \quad (i = 1, \ldots, n)
\]

The sequence of successive approximations to this solution of the equation \(x = Ax \) are of the form

\[
x^0 = (x_0^0, x_0^1, \ldots, x_0^n) \\
x^1 = (x_1^0, x_1^1, \ldots, x_1^n) \\
x^k = (x_k^0, x_k^1, \ldots, x_k^n)
\]

where

\[
x_i^k = \sum_{i=1}^{n} a_{ij} x_{j}^{k-1} + b_i
\]

and we can choose any point \(x^0 \) as the "zeroth approximation".

Each of the conditions (4-6) is sufficient for applicability of the method of successive approximations, but none of them is necessary. In fact, examples can be constructed in which each of the conditions (4-6) is satisfied, but not the other two.

68.2 Contraction mapping and differential equations

The most interesting applications of Theorem (68.1) arise when the space \(R \) is a function space.

We can use this theorem to prove a number of existence and uniqueness theorems for differential and integral equations.

Theorem 68.2. (Picard). Given a function \(f(x,y) \) defined and continuous on a plane domain \(G \) containing the point \((x_0, y_0)\) suppose \(f \) satisfies a Lipschitz condition of the form

\[
|f(x,y) - f(x,\tilde{y})| \leq M|y - \tilde{y}|
\]

in the variable \(y \). Then there is an interval \(|x - x_0| \leq \delta \) in which the differential equation

\[
\frac{dy}{dx} = f(x,y)
\]

has a unique solution

\[
y = \varphi(x)
\]

satisfying the initial condition

\[
\varphi(x_0) = y_0
\]
Remark. By an n–dimensional domain we mean an open connected set in Euclidean n–space.

Proof. Together the differential equation (7) and the initial condition (8) are equivalent to the integral equation

$$(9) \quad \varphi(x) = y_0 + \int_{x_0}^{x} f(t, \varphi(t)) dt$$

By the continuity of f, we have

$$(10) \quad |f(x, y)| \leq K$$

in some domain $G' \subset G$ (in fact f is bounded on $G' \subset G$) containing the point (x_0, y_0). Choose $\delta > 0$ such that

1. $(x, y) \in G'$ if $|x - x_0| \leq \delta$, $|y - y_0| \leq K\delta$
2. $M\delta < 1$

and let C^* be the space of continuous functions φ defined on the interval $|x - x_0| \leq \delta$ and such that $|\varphi(x) - y_0| \leq K\delta$, equipped with the metric

$$\rho(\varphi, \tilde{\varphi}) = \max_{x} |\varphi(x) - \tilde{\varphi}(x)|$$

The space C^* is complete, since it is closed subspace of the space of all continuous functions on $[x_0 - \delta, x_0 + \delta]$. Consider the mapping $\psi = A\varphi$ defined by the integral equation

$$\psi(x) = y_0 + \int_{x_0}^{x} f(t, \varphi(t)) dt \ (|x - x_0| \leq \delta)$$

Clearly A is a contraction mapping carrying C^* into itself. In fact, if $\varphi \in C^*$, $|x - x_0| \leq \delta$ then

$$|\psi(x) - y_0| = |\int_{x_0}^{x} f(t, \varphi(t)) dt| \leq$$

$$\leq \int_{x_0}^{x} |f(t, \varphi(t))| dt \leq$$

$$\leq K|x - x_0| \leq K\delta$$

by (10), and hence $\psi = A\varphi$ also belongs to C^*. Moreover,

$$|\psi(x) - \tilde{\psi}(x)| \leq \int_{x_0}^{x} |f(t, \varphi(t)) - f(t, \tilde{\varphi}(t))| dt$$

$$\leq M\delta|\varphi(t) - \tilde{\varphi}(t)|$$
and hence
\[\rho(\psi, \tilde{\psi}) \leq M\delta \rho(\psi, \tilde{\psi}) \]

after maximizing with respect to \(x \). But \(M\delta < 1 \), so that \(A \) is a contraction mapping. It follows from Theorem (68.1) that the equation \(\varphi = A\varphi \), i.e. the integral equation (9), has a unique solution in the space \(C^* \). \(\square \)