
MA651 Topology. Lecture 5. Cartesian Product Topology.

Connectedness.

This text is based on the following books:

• ”Fundamental concepts of topology” by Peter O’Neil

• ”Topology” by James Dugundgji

• ”Elements of Mathematics: General Topology” by Nicolas Bourbaki

I have intentionally made several mistakes in this text. The first homework assignment is to find

them.

29 Cartesian Product Topology.

Let {(Xα, Tα) | α ∈ A } be any family of topological spaces. We would like to topologize the

Cartesian product
∏
α

Xα.

There are of course various topologies we can put on
∏
α

Xα, for example, the discrete, or indiscrete

topologies. It turns out that these do not yield interesting theorems. All told, we have the following

criteria to guide us in making a final choice:

1. The topology should be mathematically fruitful.

2. It should have some relations to the given topologies. That is, we should be able to draw

conclusions about the product space from the coordinate spaces, and conversely.

3. We would like the projections pβ :
∏
α∈A

Xα → Xβ to be continuous.

4. In the case A consists of the integers 1, 2, . . . , n (or actually, any finite set), and each Xi = R,

we would like the space
n∏

i=1

Xi to identify (in sense of homeomorphism) with the Euclidean

space Rn.
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While a satisfactory topology was easy for finite products, Tietze in 1923 was the first to topologize

infinite products with any degree of success. He defined a topology on
∏
α∈A

Xα be specifying the

subbasis sets as those of the form
∏
α∈A

Gα, where Gα is open in Xα. This was a natural choice,

since it was known to work very well for finite products. However, subsequent experience was

shown Tychonov’s 1930 definition to be the more useful one, and this is the one today is known

as the product topology. In particular, Tychonov’s Theorem which we will learn later (but see

p.234 of Mankres’s book) is considered by many the most important theorem in set topology, and

it is true for Tychonov’s, but not for Tietze’s topology.

Definition 29.1. Let {(Xα, Tα) | α ∈ A } be any family of topological spaces. The cartesian

product topology in
∏
α

Xα is that having for subbasis all set p−1
β (Uβ), where Uβ ranges over all

members of Tβ and β over all elements of A , i.e. the product topology generated by {p−1
α (Uα) |

α ∈ A and Uα is Tα-open}

The basic open sets of the cartesian product topology look like
n⋂

i=1

p−1
αi

(Uαi
), where α1, . . . , αn are

in A and Uαi
is open in Xαi

for i = 1, 2, . . . , n. Since p−1
β (Uβ)∩ p−1

β (Vβ) = p−1
β (Uβ ∩ Vβ) whenever

β ∈ A and Uβ, Vβ ∈ Tβ, we may always assume for convenience that the αi’s are chosen to be

distinct in the above expression.

Note that a set
∏
α∈A

Gα, where each Gα is open in each Xα and Gα 6= Xα, for infinitely many

α is not open in
∏
α∈A

Xα in the cartesian product topology. This is immediate since
∏
α∈A

Gα can

contain no basic open set
n⋂

i=1

p−1
αi

(Uαi
) as a subset if each (or at least infinitely many) Gα 6= Xα.

this makes it easy to see that in general, when A is infinite and infinitely many Xα have at least

two points, then

Tychonov product topology $ Tietze product topology

since the Tietze product topology is generated by

{
∏
α∈A

Gα | Gα is open in Xα∀α ∈ A }

In fact,

n⋂
i=1

p−1
αi

(Uαi
) =

∏
α∈A

Gα, where Gα =

{
Uα, α = αi, i = 1, . . . , n

Xα, α 6= αi
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so each basis Tychonov-open set is Tietze-open. When A is finite, the two topologies coincide.

Example 29.1. Let A = Z+ and Xi = R for each positive integer i. Then X =
∏
i∈A

Xi =
∞∏
1

Xi

may be thought of as the set of all real-valued sequences. Let S consist of all sets
∞∏
1

Ai, where Ai

is open in R and Ai = R for all but at most finitely many values of i. Then S generates a product

topology on X.

A subbasis open set is one of the form p−1
i (Uj), where Uj is Euclidean open in R. Since p−1

j (Uj) =

{x | x ∈
∞∏
1

Xi and xj ∈ Uj}, then p−1
j (Uj) consist of all x : Z+ → R with a < xj < b; xi may be

any real number for i 6= j.

A basis open set is a finite intersection of subbasic open sets, say s =
n⋂

i=1

pji(Uji), where j1, . . . , jn

are positive integers and each Uji is open in R. Then x ∈ s exactly when x : Z+ → R and xji ∈ Uji

for i = 1, . . . , n; for i 6= j1, . . . , jn, xi may be any real number.

When the index set is finite, say A = {1, . . . , n} then the function
n∏
1

Xi can be identified with

the n−tuple set X1 ×X2 × · · · ×Xn by thinking of x in
n∏
1

Xi as (x1, . . . , xn). the identification

is a topological one if we replace subbasis open sets p−1
i (Ui) in the product topology with subsets

X1 × · · · ×Xi−1 × Ui ×Xi+1 × · · · ×Xn of X1 × · · · ×Xn.

Theorem 29.1. Let A = {1, . . . , n}, where n is a positive integer. Let τ be the topology on

X1 × · · · ×Xn generated by {G1 × · · · ×Gn | Gi ∈ Ti, i = 1, . . . , n}. Then,

(
n∏

i=1

Xi, P ) ∼= (X1 × · · · ×Xn, τ)

where P is a product topology (by Definition (29.1)).

Proof. Define a map ϕ :
n∏

i=1

Xi → X1×· · ·×Xn by letting ϕ(x) = (x1, . . . , xn) for each x ∈
n∏

i=1

Xi.

Immediately, ϕ is a bijection.

To show that ϕ is continuous, let G1× · · · ×Gn ∈ τ . Then, ϕ−1(G1× · · · ×Gn) =
n⋂

i=1

p−1
i (Gi) ∈ P

and, therefore, ϕ is continuous by Theorem (25.1) 3.
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If
n⋂

i=1

p−1
i (Vi) ∈ P , then ϕ(

n⋂
i=1

p−1
i (Vi)) = V1 × · · · × Vn ∈ τ . Hence by Theorem (27.1) ϕ is a

homeomorphism.

Henceforth we can always identify a product space (
n∏

i=1

Xi, P ) with the space (X1 × · · · ×Xn, τ)

of Theorem (29.1), which is notationally and conceptually simpler. Note that, in Theorem (29.1),

the sets G1 × · · ·Gn actually form a base for τ , since, for example,

(G1 × · · ·Gn) ∩ (H1 × · · ·Hn) = (G1 ∩H1)× · · · × (Gn ∩Hn).

Example 29.2. Let Xi = R for i = 1, . . . , n. Then (
n∏

i=1

Xi, P ) is essentially the same as Euclidean

n−space Rn.

The projection maps pβ :
∏
α∈A

Xα → Xβ are all continuous in the Tychonov product topology.

Of course, the discrete topology on
∏
α∈A

Xα also has this property, and is clearly the largest

such topology. It turns out that the Tychonov topology is smallest in which each projection is

continuous. A perhaps unexpected feature of the Tychonov topology is that each pβ is an open

map as well.

Theorem 29.2.

1. If β ∈ A , then pβ :
∏
α∈A

Xα → Xβ is a (P, Tβ) continuous surjection.

2. If M is a topology on
∏
α∈A

Xα, and if pβ is (M, Tβ) continuous for each β ∈ A , then P ⊂ M .

3. pβ is an open map for each β ∈ A .

Proof.

1. Let β ∈ A . Immediately, pβ is a surjection. If G ∈ Tβ, then p−1
β (G) ∈ P by Definition

(29.1), hence pβ is continuous.

2. Suppose pβ :
∏
α∈A

Xα → Xβ is (M, Tβ) continuous for each β ∈ A . Then, {p−1
β (Vβ) | β ∈

A ∧ (Vβ ∈ Tβ)} ⊂ M by Definition (25.1). Then by Definition (29.1) and Theorem (24.1)

P ⊂ M .
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3. Let β ∈ A . Note that, if
n⋂

i=1

p−1
αi

(Uαi
) is a basic P−open set, then,

pβ(
n⋂

i=1

p−1
αi

(Uαi
)) =

{
Uαi

if β = αi for some i, 1 ≤ i ≤ n

Xβ if β 6= αi for each i, . . . , n

Thus, pβ(b) ∈ Tβ for each basic P−open set b. If now V is any P−open set, then there is

some set C of basis open sets with V = ∪C. Then, pβ(V ) = pβ(∪C) =
⋃
β∈C

pβ(b) ∈ Tβ.

Sometimes Theorem (29.2) 2 is used as the definition of the product topology. In this approach, P

is by definition the intersection of all topologies on
∏
α∈A

Xα in which each projection is continuous.

one then proves that the sets {p−1
β (Vβ) constitute a base for the topology. This approach is

motivated by a more general problem in topology: given maps fα : X → Yα, and topologies Mα

on Yα, find the smallest topology T on X such that each fα is continuous.

30 Slices in Cartesian Product Topology.

Given a point f in
∏
α∈A

Xα, and some β ∈ A , the subset of
∏
α∈A

Xα consisting of all g with

g(α) = f(α) whenever α 6= β, may be visualized as a space parallel to the coordinate space Xβ.

For example, in R2 = R × R, the set of points (x, 3) constitutes a space parallel to one copy of

R i.e. a line parallel to the x−axis. It is not surprising that such a parallel space, or slice, is

homeomorphic to Xβ. This means that each Xβ may be thought of as a subspace of
∏
α∈A

Xα, a fact

which is extremely useful when we know something about the product space and wish to study

the individual coordinate spaces.

Definition 30.1. Let
∏
α∈A

Xα be an arbitrary cartesian product, and xo = {xo
α} a given point.

For each index β, the set

S(xo; β) = Xβ ×
∏
{xo

α | α 6= β} ⊂
∏
α∈A

Xα

is called the slice in
∏

α∈A Xα through xo parallel to Xβ

Example 30.1. In X3 = X × X × X, with xo = (xo
1, x

o
2, x

o
3), the slice S(xo; 1) = {(xo

1, x
o
2, x

o
3) |

x ∈ R}, and so is aline parallel to the x−axis going through xo.
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Theorem 30.1.

The map sβ : Xβ → S(xo; β) given by

xβ → xβ ×
∏
{xo

α | α 6= β}

is a homeomorphism of Xβ with the subspace S(xo; β) = s.

31 Connectedness.

Intuitively, a space is connected if it does not consist of two separate pieces. This simple idea has

had important consequences in topology and has led to highly sophisticated algebraic techniques

for distinguishing between spaces.

Definition 31.1. A topological space Y is connected if it is not the union of two nonempty

disjoint open sets. A subset B ⊂ Y is connected if it is connected as a subspace of Y .

Example 31.1. Sierpinski space is connected: the only possible decomposition is 0,1, and 1 is not

open. The discrete space 2 is not connected.

Example 31.2. The real number system with the upper-limit topology (i.e. topology generated by

all sets of the form {x | x > a} and {x | x ≤ b}, therefore having the sets ]a, b] as basis) is not a

connected space, since {x | x > a} and {x | x ≤ b} are both open sets.

Example 31.3. The rationals Q ⊂ R considering as a subset of real with Euclidean topology are

not connected, since {x | x >
√

2} ∩Q, {x | x <
√

2} ∩Q is decomposition as required.

Theorem 31.1. The only connected subsets of R with Euclidean topology having more than one

point are R and the interval (open, closed, or half-open).

Proof is left as a homework.

The definition (31.1) can be formulated in handier fashion.

Proposition 31.1. The following properties are equivalent:

1. Y is connected.

2. The only two subsets of Y are both open and closed are Ø and Y .

3. No continuous f : Y → 2 is surjective.

Proof. • (1) ⇒ (2). If G ⊂ Y is both open and closed, and G 6= Ø, Y , then Y = G ∪ CG

shows that Y is not connected.
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• (2) ⇒ (3). If f : Y → 2 were a continuous surjection, then f−1(0) 6= Ø,Y , and because 0 is

open and closed in 2, f−1(0) is open and closed in Y .

• (3) ⇒ (1) If Y = A ∪ B, A, B disjoint nonempty sets, then A, B are also closed, and the

characteristic function cA = Y → 2 is a continuous surjection.

Connectedness is clearly a topological invariant; even more,

Theorem 31.2. The continuous image of a connected set is connected. That is, if X is connected

and f : X → Y is continuous, then f(X) is connected.

Proof. The map f : X → f(X) is continuous; if f(X) were not connected it would be, by

Proposition (31.1), a continuous surjection g : f(X) → 2, and then g ◦ f : X → 2 would also be a

continuous surjection, contradicting the connectedness of X.

Theorem 31.3. Let Y be any space. The union of any family of connected subsets having at least

one point in common is also connected.

Proof. Let C =
⋃
α

Aα, y0 ∈
⋂

α Aα, and f : C → 2 continuous. Since each Aα is connected, no

f |Aα is surjective, and because y0 ∈ Aα for each α, f(y) = f(y0) for all y ∈ Aα and all α. Thus f

cannot be surjective.

Example 31.4. In contrast, the intersection of even two connected sets need not be connected.

Furthermore, if all the Ai, i ∈ Z+ are connected, and A1 ⊂ A2, · · · , still C =
⋂
α

Aα, need not be

connected: let Y = I2 − {(x, 0) | 1
3
≤ x ≤ 2

3
} and An = {(x, y) ∈ Y | y ≤ 1

n
}.

Theorem 31.4. Let A ⊂ Y be connected. then any set B satisfying A ⊂ B ⊂ Ā is also connected.

In particular, the closure of a connected set is connected.

Proof. Let f : B → 2 be continuous; since A is connected, f |A is not surjective. Nothing that

B = Ā ∩ B = ĀB, the continuity of f on B shows f(B) = f(ĀB) ⊂ ¯f(A) = f(A), so that f

cannot be surjective.

Example 31.5. Since Y = {(x, y) | y = sin 1
x
, 0 < x ≤ 1} ⊂ R2 with Euclidean topology is a

continuous image of ]0, 1], it follows from theorems (31.2)and (31.4) that Ȳ = Y ∪ {(0, y) | −1 ≤
y ≤ 1} is connected. Observe that even with omission of any subset of {(0, y) | −1 ≤ y ≤ 1}, the

resulting set is still connected.

Theorem 31.5. Let {Yα | α ∈ A } be any family of spaces.
∏
α∈A

Yα is connected if and only if

each Yα is connected.

Proof is left as a question for the midterm exam.
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32 Application to Real Valued Functions

We obtain a generalization of the ”intermediate value theorem” of analysis.

Theorem 32.1. Each continuous real-valued function on a connected space X takes on all values

between any two assumes.

Proof. Since, f : X → R, is continuous, f(X) ⊂ R is connected according to Theorem (31.2), so

by Theorem (31.1), f(X) is an interval. Thus, if f(x) = a, f(x′) = b, we have [a, b] ⊂ f(X), and

therefore for each c such that a ≤ c ≤ b, there is an x′′ with f(x′′) = c.

From theorems (31.1) and (31.5) follows that Rn, In and I∞ are connected; even more,

Theorem 32.2. Let n > 1, and B ⊂ Rn be countable (Rn is with Euclidean topology). Then

Rn −B is connected.

Proof. We can assume that 0 6∈ B, otherwise we move the origin. According to Theorem (31.3),

it suffices to show that the origin and each x ∈ Rn − B are contained in a connected set lying in

Rn − B. Draw ~0x and let l be any line segment (say, of length 1) intersecting ~0x at exactly one

point, distinct from 0 and x. For each z ∈ l, let lz = ~0x ∪ ~zx; each lz is a connected set, and any

two have only 0 and x in common. At least one lz must lie in Rn − B: for lz ∩ B 6= Ø for each

z ∈ l, then since the points of intersection for differing z are necessarily distinct, we would find

that B has a subset in 1-to-1 correspondence with the points of l and consequently B would not

be countable.

The usual technique for distinguishing between spaces stems from the observation: If h : X ∼= Y ,

then by removing a set A of prescribed topological type from X, the spaces X −A, and Y −h(A)

are also homeomorphic, so that they must have the same topological invariants.

Theorem 32.3. R1 and Rn, n > 1, are not homeomorphic.

Proof. Assume that h : Rn ∼= R1 ; removing one point a ∈ Rn, we must have h : Rn−a ∼= R1−h(a),

by Theorem (27.3). However, this is impossible by Theorem (31.2), since, Rn − a is connected

whereas R1 − h(a) is not.

The theorem than Rn is not homeomorphic to Rm for n 6= m is much deeper, involving more

delicate topological invariants (although the technique is the same). Conserving In (n > 1) and

I1, a proof similar to Theorem (32.3)shows that they are not homeomorphic. thus, though there

is a bijective map of the set I1 onto the set In, there is no bicontinuous bijection and, as we shall

see later not even continuous bijection.

Theorem 32.4. In R each closed interval is homeomorphic to [−1, +1], each open interval to

] − 1, +1[, and each half-open interval to ] − 1, +1]. Furthermore, no two of these intervals are

homeomorphic.
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Proof. Given an interval with end points a, b, a suitable one of the maps x → b+a
2
± b−a

2
x exhibits

a homeomorphism. To see that none of three standard intervals are homeomorphic, note that we

can remove 2, 0, 1 (respectively) points without destroying the connectedness.

33 Components

A disconnected space can be decomposed uniquely into connected ”components”; the number of

components provides a rough indication of how ”disconnected” a space is.

Definition 33.1. Let Y be a space, and y ∈ Y . The component C(y) of y in Y is the union of

all connected subsets of Y containing y.

It is evident from Theorem (31.3) that C(y) is connected.

Example 33.1. Let Q ⊂ R be subspace of rationals. The component of each y ∈ Q is the point

y itself. Thus, even though Y does not have the discrete topology, the components may reduce to

points. Y is called totally disconnected if C(y) = y for each y ∈ Y .

Example 33.2. Let Y ⊂ R2 be subspace consisting of the segments joining the origin 0 to the

points {(1, 1/n) | n ∈ Z+}, together with the segment ]1
2
, 1] on the x−axis. As in Example (31.5)

Y is connected, but Y − {0} is not: in Y − {0} the component of each point is the ray containing

it.

Theorem 33.1.

1. Each component C(y) is a maximal connected set in Y : there is no connected subset of Y

that properly contains C(y).

2. The set of all distinct components in Y form a partition of Y .

3. Each C(y) is closed in Y .

Proof.

1. follows from the definition.

2. If C(y) ∩ C(y′) 6= Ø, then by Theorem (31.3), C(y) ∩ C(y′) is connected, contradicting the

maximality of C(y).

3. Since C(y) is connected, so also is ¯C(y) by Theorem (31.4); by the maximality of C(y) we

must have ¯C(y) ⊂ C(y), so that C(y) is closed.

The number and structure of each component in a space Y is a topological invariant:
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Theorem 33.2. Let f : X → Y be continuous. Then the image of each component of X must lie

in a component of Y . Furthermore, if h : X ∼= Y , then h induces a 1-to-1 correspondence between

the components of X and those of Y , corresponding ones being homeomorphic.

Proof. If f is continuous, then f(C(x)) ⊃ C(f(x)) follows from Theorem (31.2), since f(C(x)) is a

connected set in Y containing f(x). If h : X ∼= Y , then because h is bicontinuous and bijective, we

have both h(C(x)) ⊂ C(h(x)) and h−1(C(h(x)))) ⊂ C(x), which shows that h(C(x)) = C(h(x)).

The rest of the proof is trivial.

34 Local Connectedness.

Definition 34.1. A space Y is locally connected if it has a basis consisting of connected (open)

sets.

Example 34.1. Rn is locally connected, since each ball B(x; r) is connected. Furthermore, each

interval in R is locally connected. For each n ≥ 0, Sn is locally connected.

Example 34.2. A space may be locally connected, but not connected, as the discrete space 2 shows.

Example 34.3. A space may be connected, but not locally connected. Let Y be the space of

Example (33.2). y = (3
4
, 0) and U = B(y; 1

2
) ∩ Y . Then U , and any neighborhood V (y) ⊂ U , is

not connected: For V must intersect a ray joining 0 to some (1, 1/n) and it is trivial to verify that

this intersection is both open and closed in V . Thus no basis for Y can consist only of connected

sets.

Theorem 34.1. Y is locally connected if and only if the components of each open set are open

sets.

Proof. Let G ⊂ Y be open, C a component of G, and {U} a basis consisting of connected open sets.

Given y ∈ C, then because y ∈ G, there is a U with y ∈ U ⊂ C; but since C is the component of

y and U is connected, y ∈ U ⊂ C, showing that C is open (see Theorem (21.2)). For the converse,

note that the family of all components of all open sets in Y is a basis as required.

Example 34.4. Observe that Theorem (34.1) need not be true for nonopen sets, as {0}∪{1} ⊂ R

shows.

Example 34.5. Let Y be the space considered in Example (31.5), and Z = Y ∪ {0}. Then Z is

not locally connected, since the components of Z ∩ {(x, y) | y < 1
2
} are not open in Z.

Proposition 34.1. A Cartesian product
∏
α∈A

Yα is locally connected if and only if all the Yα are

locally connected, and all but at most finitely many are also connected.
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Example 34.6. The hypothesis that all but most finitely many Yα be connected is essential: If

An = {0, 2}, we have seen
∏
n

An is totally disconnected. But though each An is locally connected,∏
n

An is not: Its components are its points, and since
∏
n

An is not discrete, none is an open set.

Example 34.7. Local connectedness is evidently a topological invariant, and therefore it can be

used in questions of nonhomeomorphism. Thus the space Z of Example (34.5) cannot be homeo-

morphic to any interval in R.

Example 34.8. Local connectedness is not invariant under the continuous maps. Let X be the

discrete space {0, 1, 2, · · · }, Y the subspace 0 ∪ { 1
n
| n = 1, 2, · · · } of R and f : X → Y the map

f(0) = 0, f(n) = 1
n
. Then X is locally connected and f is a continuous bijection; but Y is not

locally connected.

35 Path-Connectedness.

For the most purposes of analysis, the natural notion of connectedness is joining by the path.

We can define a curve in space Y to be continuous image of the unit interval I. A path in Y is a

continuous mapping f : I → Y , rather than the image f(I) in Y . Thus, a path is a continuous

function, whereas a curve is a subset of Y ; we shall see later a reason for this distinction between

paths and curves. If f : I → Y is a path in Y , we call f(0) ∈ Y the initial starting point, and the

f(1) ∈ Y the terminal (or end) point, of the path f , and say that f runs from f(0) to f(1), or

joins f(0) to f(1). If f runs from f(0) to f(1), it is clear that the mapping t− > f(1− t), t ∈ I,

is a path in Y running from f(1) to f(0).

Definition 35.1. A space Y is path-connected (or: pairwise-connected) if each pair of its points

can be joined by a path.

Example 35.1. Rn and Sn (n ≥ 1) are path-connected. For any countable B ⊂ Rn, Rn − B is

also path-connected.

Example 35.2. Sierpinski space is path connected: the characteristic function of 1 ∈ I, regarded

as a map I → J , is a path joining 0 to 1.

Example 35.3. A discrete space having more than one point is never path-connected. Every

indiscrete space is path-connected.

A trivial but useful reformulation of Definition (35.1) is given in

Proposition 35.1. Let Y be a topological space, and y0) ∈ Y any element. Y is path-connected

if and only if each y ∈ Y can be joined to y0 by a path.
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Proof. If Y is path-connected, the condition if trivially true. Conversely, assume that the condition

is satisfied and that y, y′ ∈ Y have been given. Let f : I → Y run from y to y0 and g : I → Y

from y0 to y′; then

φ(x) =

{
f(2t) if 0 ≤ t ≤ 1

2

g(2t− 1) if 1
2
≤ t ≤ 1

is continuous (because at t = 1
2
, we have f(1) = g(0) = y0) and is a path running from y to y′.

The general relation of connectedness and path-connectedness is

Theorem 35.1. Each path-connected space is connected. but a connected space need not be path-

connected.

Proof. Since the continuous image of I is connected, the assertion follows from Theorem (31.4)

and Theorem (35.3). The following example shows that the converse is not generally true.

Example 35.4. Let Y be the space of Example (31.5); we have seen that Ȳ is connected. However,

Ȳ is not path-connected: there is no path joining (0, 0) to the point ( 1
π
, 0). Proof of this statement

is left as a homework.

It is evident that path-connectedness is a topological invariant: Indeed, the continuous image of a

path-connected space is path-connected. Furthermore, the union of any family of path-connected

spaces having a point in common is, by Theorem (35.1), also path-connected. However, the closure

of a path-connected set need not be path-connected.

Because of the property of unions, we can define path-connected components as maximal path-

connected subsets; as before, the path components partition the space; indeed, from Theorem

(35.1), the path components partition the components. However, the path components need not

be closed subsets of the space.

To determine when path-connectedness and connectedness are equivalent, we need

Proposition 35.2. The following two properties of a space Y are equivalent:

1. Each path component is open (and therefore also closed).

2. Each point of Y has a path-connected neighborhood.

Proof.

• (1) ⇒ (2) is clear, using the path component containing the given point.

• (2) ⇒ (1) Lt K be any path component, and let x ∈ K. Since x has a path-connected

neighborhood U , and since K is a maximal path-connected set containing x, x ∈ U ⊂ K,

providing that K is open. Nothing that CK is the union of the remaining (open) path

components, K is also closed.
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Theorem 35.2. Y is a path-connected if and only if it is connected, and each y ∈ Y has a

path-connected neighborhood.

Proof. Since path-connectedness implies connectedness, and Y is a path-connected neighborhood

of each point, only the converse requires proof. For this, we find from Proposition (35.2) 1) that

each path component is both open and closed in Y ; since Y is connected, this path component

must therefore be Y .

This yield an important

Corollary 35.1. An open set in Rn (or Sn) is connected if and only if it is path-connected.

Proof is left as a homework.
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