1. [20]	2. [20]	3. [30]	4	. [30]	Total: [100]	
Ma 116		Quiz 2			October 31, 200)6
Name:	Pipeline Username:					
Check your lecture:	□ A - P.Dub □ C - P.Brac	ovski (10:00a) ly (12:00a)	C	□ B - P.Du	bovski (11:00p)	
Check your recitation:	□ RA - M □ RB - M □ RC - M	I.Paliwal (Thursday I.Paliwal (Thursday I.Paliwal (Thursday	8:00a) 9:00a) 12:00a)	□ RD - □ RE - □ RF -	L.Bussolari (Friday 1 L.Bussolari (Friday 1 L.Bussolari (Friday 1)	0:00a) 1:00a) 2:00a)
Closed book and closed notes. Calculators and cellphones are to be			Show all of your work. Answers without supporting work may receive no credit.			

Pledge and sign: I pledge my honor that I have abided by the Stevens Honor System

1. [20 pts] Let $\mathbf{a} = \langle 2, -1, 3 \rangle$, $\mathbf{b} = \langle -1, 0, 3 \rangle$. Find the equation of the plane, which passes through point A(2, -1, -4) and is parallel to both \mathbf{a} and \mathbf{b} . Solution.

$$\mathbf{n} = \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 3 \\ -1 & 0 & 3 \end{vmatrix} = -3\mathbf{i} - 9\mathbf{j} - \mathbf{k}$$

Then, the equation of the plane is -3(x-2) - 9(y+1) - (z+4) = 0, or 3x + 9y + z = -7.

Answer: 3x + 9y + z = -7.

stored out of sight during the exam.

2. [20 pts] Find parametric equation of the line through A(-2, 2, 4) and perpendicular to the plane 2x - y + 5z = 12.
Solution.

 $\mathbf{n} = \langle 2, -1, 5 \rangle$ =directional vector of the line. Answer:

$$\begin{cases} x = -2 + 2t \\ y = 2 - t \\ z = 4 + 5t \end{cases}$$

3. [30 pts] Find the length of the curve $\mathbf{r}(t) = \langle 2t^{3/2}, \cos(4t), \sin(4t) \rangle, 0 \le t \le 1$. Solution.

$$L = \int_0^1 |\mathbf{r}'(t)| dt = \int_0^1 \sqrt{9t + 16} dt = \frac{2}{27} (9t + 16)^{3/2} \Big|_{t=0}^{t=1} = \frac{2}{27} (125 - 64) = \frac{122}{27}.$$

4. [30 pts] (a) Find the equation of the tangent line at point A(1, 1, 2) to the curve $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + (1 + t^2)\mathbf{k};$

Solution.

Points A corresponds to t = 1.

$$\mathbf{r}'(t) = \left\langle 1, 1, 2t \right\rangle$$

Hence, $\mathbf{r}'(1) = \langle 1, 1, 2 \rangle$ is the directional vector of the tangent line passing through A(1, 1, 2). Consequently, the answer is

$$\mathbf{r}(t) = \langle 1, 1, 2 \rangle + t \langle 1, 1, 2 \rangle$$

or

$$\begin{cases} x = 1 + t \\ y = 1 + t \\ z = 2 + 2t \end{cases}$$

(b) Find the magnitude of the projection of vector $\mathbf{a} = \langle 5, -3, 7 \rangle$ onto the above tangent line.

Solution.

$$|\operatorname{proj}_{\mathbf{r}'(1)}\mathbf{a}| = \frac{|\mathbf{a} \cdot \mathbf{r}'(1)|}{|\mathbf{r}'(1)|} = \frac{|5-3+14|}{\sqrt{6}} = \frac{16}{\sqrt{6}}.$$