Ma 221. Syllabus. Spring 2011

Instructors:

Pavel Dubovski, <u>pdubovsk @ stevens</u> Nikolai Strigul, <u>nstrigul @ stevens.edu</u> Lakshmi Chandra, <u>liswarac@Stevens.edu</u> Thomas Lonon, <u>tlonon @stevens.edu</u> Kristina Krsteva, kkrsteva@stevens.edu

Office hours:

P.Dubovski: Kidde 226, M,W 2-4 and by appointment. N. Strigul: Kidde 230, M, W 2-4 and by appointment.

Textbook:

[1] Nagle, Saff, and Snider, "Fundamentals of Differential Equations and Boundary Value Problems," 5th edition, Addison Wesley. ISBN 032161321X

Syllabus:

Week 1 (January 18 – 22)

1.1-1.4 Direction Fields. Isoclines. Euler	Recommended problems:
approximation.	1.1: # 1-17.
1A. Taylor series method	1.2: # 1, 2, 9, 10, 20, 21, 23-28, 30, 31.
1D Phase portrait.	1.3: #3, 4, 5, 7, 9, 17, 18.
2.2 Separable equations.	1A, 2.2.

Hw1 due on Tuesday 2/1

1.2: # 2, 10, 20

1.3: # 5

1A Compute the Taylor polynomial of degree 6 for the solution to the equation

$$\frac{d^2y}{dx^2} = 2xy$$
, if $y(0) = 2$, $y'(0) = -1$.

1D (d), (e), (f), (g) (bonus).

2.2: #7,8,13,15,16,18,20,26,34,38.

3.2: # 10, 11 (p. 105)

Weeks 2-3 (January 24 - 29 and February 31 - 5)

2.3 Linear Equations: Integrating factor,	Recommended problems:
Variation of parameters.	2.3: #7,8,14,15,18,20,21,22,30,32,33.
2.4 Exact Equations	2.4: # 10, 11, 13, 14, 19, 22, 23, 25, 27, 28, 29,
	30, 31, 33(a-d).
2.6 Homogeneous, Bernoulli, Riccati eqns.	
2E – Clairaut equation	2.5: # 8, 9, 12
	2.6: # 1-16, 21-28, 43.
	2E (a-d)

Hw2 due on Tuesday 2/8
2.3: # 8, 14, 18, 20, 22, 30
2.4: # 10, 14, 22, 28, 30
2.5 # 10(bonus), 14
2.6 # 10, 12, 14, 22, 24, 34, 36, 38, 45, 46.
p. 83 # 3
pp. 87 – 88: 2C, 2D(a-b)(bonus)
p. 88: 2E (e)(bonus)
p. 91: 2H (a)-(d)

Week 4 (February 7 - 12)

3.2 Population models. Logistic eqn.	Recommended problems:
3.3 Heating and Cooling.	Ch. 2. Review # 1, 2, 3, 4, 6, 7, 14, 16, 17, 19,
3.5 Electrical circuits	23, 26, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40.
	3.2: #9, 13, 23, 25
	3.3 : # 1, 3, 15
	3.5 #1, 5

Hw3 due on Tuesday 2/15: **3.2** # 14, 15, 20, 24, 26a,b **3.3** # 2, 4, 15 **3.5** # 2, 8(bonus) 3B (a) (bonus)

Wednesday 2/16: in-class quiz. Chapters 1 and 2.

Week 5 (February 14 – 19)

4.1, 4.2, 4.3	Recommended problems:
Homogeneous second-order linear equations	4.1: # 4, 5, 7, 8
	4.2: #1-12, 13-20, 21-25, 27-33, 34, 35,
	37 – 44, 46.
	4.3: #1-8, 9-20, 21-27, 28, 29, 31, 32, 33.

Hw4 due on Thursday 2/24 or Friday 2/25 (depending on your recitation classes): 4.1: # 8
4.2: # 2, 4, 12, 14, 16, 22, 28, 30, 32, 36, 46 (a,b)
4.3: # 2, 4, 10, 22, 24, 28, 32(a,b), 34(bonus)

Week 6 (February 21-26):

Sections 4.4, 4.5, 4.6	Recommended problems:
Inhomogeneous linear equations	4.4: #9-26, 33-36.
	4.5 # 17-22, 23-30
	4.6: # 1-10, 11 – 18, 20.

Hw5 due on Tuesday 3/1:

4.4: #10, 12, 14, 16, 18, 20, 22, 243, 26, 34

4.5: #18, 20, 22, 28, 30, 42, 44, 46

4.6: #2, 8, 10, 12, 14, 16, 20(bonus)

Week 7 (February 28 – March 5)

4.7 Cauchy-Euler equations.

Reduction of Order for variable-coefficient

equations

Sections 6.1, 6.2, 6.3

Recommended problems:

4.7 # 9-18, 19-20, 21, 22, 37-40, 41-43, 44, 45-

49

6.1: #7 - 14, 15 - 18, 19 - 24,

6.2: #1-6, 19-21

6.3: #1 - 10.

Hw6 due on Tuesday 3/8:

4.7 # 10, 12, 20, 22, 30, 32(bonus), 38, 40, 42, 44, 46, 48, 52.

6.1: # 14, 16, 20, 22, 32

6.2: #4, 6, 20

6.3: # 6

Week 8 (March 7 – 12)

vveek o (waren / 12)	
Laplace transform: 7.1-7.6, 7.8	Recommended problems:
	7.3 # 1, 20, 27, 31, 32
	7.4 # 2, 3, 8, 12, 13, 21, 22, 31, 32, 33, 34, 36,
	38, 39, 42, 43
	7.5 # 2, 3, 7, 8, 11, 12, 17, 18, 197.5 # 25-28, 33-
	38
	7.6 # 6, 7, 11, 12, 14, 19, 20, 21, 22, 25, 26, 47,
	48, 59, 60
	7.8 # 1, 2, 7, 8, 13, 14, 21, 22, 25, 26, 29, 30, 31,
	32

Hw 7 due on Tuesday 3/22:

Pp. 250 – 251 # 2, 10, 12, 18, 24, 26, 32, 36.

P. 251 # 2, 3 (Technical writing section)

Pp. 369 - 370 # 2, 6, 10.

7.4 # 2, 32, 42(bonus)

7.5 # 2, 8, 10, 18

7.8 # 8, 14, 24, 30 (bonus)

Week 9 (March 14 – 19) – Spring break

Monday, March 28: in-class Quiz 2. Chapters 4, 7

Week 10 (March 21 - 26)

Review. Pp. 248 – 250, 368 – 369	Recommended problems:
,	Tuesday class:
	Pp. 250 – 251 # 1 – 39, # 1 – 4.
	Pp. 369 – 370 # 1 – 10, # 1- 3.
	Thursday class:
	10.2 # 1 – 8, 9 – 14
	11.2 # 1 - 12, 13 - 20
	Solve equations:
	(1) y''+y'-2y=0, y(0)=0, y(1)=1
	(2) 2y''+y'-3y=1, y(0)=1, y(1)=0
	(3) y''+y'-2y=x, y(0)=2, y(1)=1
	Find λ for which the following equations have
	nonzero solutions:
	$(4) y'' + \lambda y = 0, y(0) = y(1) = 0.$
	(5) $y'' + \lambda y = 0$, $y(0) = y(\pi) = 0$.
	(6) $y'' + \lambda y = 0$, $y(0) = y(L) = 0$.
	(7) $y''+\lambda y=0$, $y'(0)=y(L)=0$.
	(8) $y''+\lambda y=0$, $y(0)=y'(L)=0$.
	(9) $y''+\lambda y=0$, $y'(0)=y'(L)=0$.

Hw 8 due on Thursday 3/31:

10.2 # 2, 4, 10, 12

11.2 # 2, 4, 6, 8, 10, 12, 14, 16, 18, 20.

Week 11 (March 28 – April 2)

	Recommended problems:
Eigenvalue problems and boundary value	11.2 # 23-26, 27 – 29
problems: 11.1 – 11.3	11.3: # 1 – 6, 7 – 11

Hw 9 due on Thursday 4/7:

11.2 # 24, 28(bonus)

11.3: # 4, 6, 8, 10

11.5: # 2, 4

Week 12 (April 4 – 9)

/	
1 ,	11.5: # 1, 3, 5, 6, 7, 8 11.6: # 1 – 10, 11 – 20, 23 – 26

Hw 10 due on Thursday 4/14:

11.6: # 2, 4, 10, 12, 14, 20, 24, 26

10.2: # 16, 18, 20, 22, 24

10.5: # 2, 4, 6

Week 13 (April 11 – 16)

Week 13 (April 11 – 10)	
Heat and Wave equations: 10.2, 10.1,	10.2: #15-18, 19-22, 23, 24, 27-33
10.5, 10.6	What boundary condition should be imposed for the
	heat transfer in a rod if the left end is insulated and the
	right end has convective heat transfer with the outer
	medium of temperature U ?
	10.5: # 1 – 19
	10.6: # 1-4, 5, 6, 7, 8, 9, 10, 11, 13 – 18, 20, 21

Hw 11 due on Tuesday 4/19:

10.5: # 8, 10, 12, 14, 16

10.6: # 2, 8, 10, 14, 16, 18.

Week 14 (April 18 - 23)

Series solutions: 8.3	8.3 # 11-18, 19-24, 25 – 28, 32, 34, 35, 36
Laplace equation: 10.7	10.7: # 1-5, 6, 7 – 8, 9, 10 – 17, 18, 19, 20 – 24

Hw 12 due on Tuesday 4/26:

8.3: # 16, 24, 34(bonus)

10.7: # 2, 4, 8, 10, 12, 14, 20, 24 (bonus).

Wednesday, April 27: in-class Quiz 3. Chapters 11, 10.

Week 15 (April 25 – 30)

BVP and PDE review.	Recommended problems: TBA
Quiz 3.	

Hw 13 due on Tuesday 5/3:	
TBA	

Week 16 (May 1 – 3) Review

Review Recitation class: Solutions to Quiz 3.

Grading:

Hws (due on Tuesdays): 20% Three midterm quizzes: 40% Final Exam (cumulative): 40%

Bonuses (class activity and bonus problems) – up to 5%