Ma 635. Real Analysis I. HW problems

HW 1 (due 09/7):

1. (Kolm, p.8 #2) Show that in general $(A - B) \cup B \neq A$. Solution: Consider $A = \{1, 2\}, B = \{2, 3\}$. Then $A - B = \{1\}$ and $(A - B) \cup B = \{1, 2, 3\} \neq A$.

2. (Kolm, p.9 #6) Let A_n be the set of all positive integers divisible by n. Find the sets

(a)
$$\bigcup_{n=2}^{\infty} A_n$$
; (b) $\bigcap_{n=2}^{\infty} A_n$.

Solution. (a) In view of $n \in A_n$ we obtain $\bigcup_{n=2}^{\infty} A_n = \{2, 3, 4, \ldots\} = \mathbf{N} - \{1\}.$ (b) Let $k \in \bigcap_{n=2}^{\infty} A_n$ and p > k be a prime number. Then $k \notin A_p$ and $k \notin \bigcap_{n=2}^{\infty} A_n$. Finally, $\bigcap_{n=2}^{\infty} A_n = \emptyset$. 3. (Kolm, p.9 # 8) Let A_{α} be the set of points lying on the curv $y = 1/x^{\alpha}$, $0 < x < \infty$.

What is $\bigcap A_{\alpha}$?

Hint: plot the graphs of the functions for different α . Answer: just one point (1,1).

4. (Kolm, p. 19 # 2). Let M be any infinite set and A any countable set. Prove that $M \sim M \cup A$.

Solution: If M is countable then clearly $M \sim M \cup A$ since both sets are countable. Let's consider $|M| > \aleph_0$. Let $M_A \subset M$ be a countable subset of M. Then we establish a bijection (1-1 and onto correspondence) between M_A and $M_A \cup A$ and the natural correspondence between $M \setminus M_A$ and $(M \cup A) \setminus (M_A \cup A)$. Thus, we obtain a bijection between M and $M \cup A$.

5. (Kolm, p. 19 # 6) Prove that the set F of all real functions defined on a set M has a greater cardinality than |M|.

Solution. The set C of all characteristic functions (i.e., taking only the values 0 and 1) on M is equivalent to P(M) – the set of all subsets of M. Since $C \subset F$ then $|F| \ge |C| = |P(M)| = 2^{|M|} > |M|$.