Ma 635. Real Analysis I. Hw2 (due 09/14). Solutions.

1. [2] p. 45 # 1 Given a metric space (X, d), prove that (a) $|d(x, z) - d(y, u)| \le d(x, y) + d(z, u)$ (b) $|d(x, z) - d(y, z)| \le d(x, y)$

2. [2] p. 45 # 5

Prove that the metric in $(-\infty, +\infty)$, $d_{\infty}(x, y) = \max_{1 \le k \le n} |x_k - y_k|$ is the limiting case of the metric

$$d_p(x,y) = \left(\sum_{k=1}^n |x_k - y_k|^p\right)^{1/p} \text{ as } p \to \infty.$$

3. [2] p. 45 # 8 Exhibit an isometry between the spaces C[0, 1] and C[1, 2].

4. [2] p. 54 # 3 Prove that if $x_n \to x$, $y_n \to y$ as $n \to \infty$ then $d(x_n, y_n) \to d(x, y)$.

5. [2] p. 54 # 7

Show that 1/4 belongs to the Cantor set.

6. [2] p. 65 # 2 Prove that space $m = l_{\infty}$ of bounded sequences with metric $d(x, y) = \sup_{1 \le k \le \infty} |x_k - y_k|$ is complete.

7. [2] p. 65 # 4 Suppose metric space R is complete, and let $\{A_n\}$ be a sequence of closed subsets of R nested in the sense that

 $A_1 \supset A_2 \supset A_3 \supset \cdots$

Let also the diameters tend to zero: $\lim_{n \to \infty} d(A_n) = 0$. Prove that the intersection $\bigcap_{n=1}^{\infty} A_n$ is nonempty.

8. [1] p. 38 # 1Show that

$$d(x,y) = \left|\frac{1}{x} - \frac{1}{y}\right|$$

defines a metric on $(0, \infty)$.

9. [1] p. 38 # 6

If d is any metric on M, show that $\rho(x,y) = \sqrt{d(x,y)}$, $\sigma(x,y) = \frac{d(x,y)}{1+d(x,y)}$, and $\tau(x,y) = \min\{d(x,y),1\}$ are also metrics on M.

10. [1] p. 39 # 11

Let R^{∞} be the space of all infinite dimensional vectors $\{x_n\}_{n=1}^{\infty}$. Show that the expression

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

defines a metric on R^{∞} .

11. [1] p. 39 # 12 Check that $d(x,y) = \sup_{a \le t \le b} |x(t) - y(t)|$ defines a metric on C[a,b], the space of all continuous functions defined on the closed interval [a, b].

12. [1] p. 42 # 23

The subset of l_{∞} consisting of all sequences that converge to 0 is denoted by c_0 . Show that we have the following proper set inclusions: $l_1 \subset l_2 \subset c_0 \subset l_{\infty}$.

13. [1] p. 46 # 34 If $x_n \to x$ in (M, d), show that $\forall y \in M, d(x_n, y) \to d(x, y)$.

14. [1] p. 46 # 37

A Cauchy sequence with a convergent subsequence converges.

(bonus 1) [2] p. 53 #1 Give an example of a metric space R and two open balls $B_{r_1}(x)$ and $B_{r_2}(x)$ in R such that $B_{r_1}(x) \subset B_{r_2}(y)$ although $r_1 > r_2$.

(bonus 2) [2] p. 65 # 6

Give an example of a complete metric space R and a nested sequence $\{A_n\}$ of closed subsets of R such that

$$\bigcap_{n=1}^{\infty} A_n = \emptyset.$$

Reconcile this example with Problem 4.

References

- Carothers N.L., *Real Analysis*. Cambridge University Press, 2000. ISBN 0521497493 or ISBN 0521497566.
- [2] Kolmogorov, A.N., and Fomin, S.V., *Introductory Real Analysis*. Dover, 1970. ISBN 0486612260.
- [3] Haaser, N.B., and Sullivan, J.A., *Real Analysis*. Dover, 1991. ISBN 0486665097.
- [4] Rudin, W., Real and Complex Analysis, 3d ed. McGraw-Hills, 1987.
- [5] Folland, G.B., Real Analysis. Wiley, 1984.
- [6] Reed, M. and Simon, B., Methods of Modern Mathematical Physics. 1. Functional Analysis. Academic Press 1972.
- [7] Oxtoby, J.C., Measure and Category. A survey of the Analogies between Topological and Measure Spaces. Springer-Verlag, 1971.