Ma 635. Real Analysis I. Hw2 (due 09/14). Solutions.

1. [2] p. $45 \# 1$

Given a metric space (X, d), prove that
(a) $|d(x, z)-d(y, u)| \leq d(x, y)+d(z, u)$
(b) $|d(x, z)-d(y, z)| \leq d(x, y)$

Solution. (a) The triangle inequality yields: $d(x, z) \leq d(x, y)+d(y, u)+d(u, z)$. Then, $d(x, z)-d(y, u) \leq$ $d(x, y)+d(u, z)$. Similarly, $d(y, u)-d(x, z) \leq d(x, y)+d(u, z)$. The result follows from the last two inequalities. (b) can be obtained similarly.
2. [2] p. $45 \# 5$

Prove that the metric in $(-\infty,+\infty), d_{\infty}(x, y)=\max _{1 \leq k \leq n}\left|x_{k}-y_{k}\right|$ is the limiting case of the metric $d_{p}(x, y)=\left(\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{p}\right)^{1 / p}$ as $p \rightarrow \infty$.
Solution. Let $\max _{1 \leq k \leq n}\left|x_{k}-y_{k}\right|$ be attained at $k=k_{0}: \max _{1 \leq k \leq n}\left|x_{k}-y_{k}\right|=\left|x_{k_{0}}-y_{k_{0}}\right|$. Then

$$
\begin{aligned}
\left(\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{p}\right)^{1 / p} & =\left|x_{k_{0}}-y_{k_{0}}\right|\left(\sum_{k=1}^{n}\left|\frac{x_{k}-y_{k}}{x_{k_{0}}-y_{k_{0}}}\right|^{p}\right)^{1 / p} \\
& \leq\left|x_{k_{0}}-y_{k_{0}}\right| n^{1 / p} \rightarrow\left|x_{k_{0}}-y_{k_{0}}\right| .
\end{aligned}
$$

From another point of view,

$$
\left(\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{p}\right)^{1 / p} \geq\left(\left|x_{k_{0}}-y_{k_{0}}\right|^{p}\right)^{1 / p}=\left|x_{k_{0}}-y_{k_{0}}\right|
$$

From two last expressions we arrive at the solution.
3. [2] p. $45 \# 8$

Exhibit an isometry between the spaces $C[0,1]$ and $C[1,2]$.
Solution. Let $f: C[0,1] \mapsto C[1,2]$ as follows: $f(x)(t)=x(t+1)$. Clearly,

$$
d(f(x), f(y))=\sup _{1 \leq t \leq 2}|f(x)(t)-f(y)(t)|=\sup _{0 \leq t \leq 1}|x(t)-y(t)|=d(x, y)
$$

Hence, f is an isometry.
4. [2] p. $54 \# 3$

Prove that if $x_{n} \rightarrow x, y_{n} \rightarrow y$ as $n \rightarrow \infty$ then $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.
Solution. From the corollary from triangle inequality, $\left|d\left(x_{n}, y_{n}\right)-d(x, y)\right| \leq d\left(x_{n}, x\right)+d\left(y_{n}, y\right) \rightarrow 0$.
5. [2] p. $54 \# 7$

Solution. In the ternary number system, $\left(\frac{1}{4}\right)_{10}=\left(\frac{1}{11}\right)_{3}=0.02020202 \ldots$ which has no ones. Since in the ternary system the elements of the Cantor discontinuum and only they are presented by ternary fractions without ones, then $1 / 4$ belongs to the Cantor set.
6. [2] p. $65 \# 2$

Prove that space $m=l_{\infty}$ of bounded sequences with metric $d(x, y)=\sup _{1 \leq k \leq \infty}\left|x_{k}-y_{k}\right|$ is complete.
Solution. Let $\left\{x^{(n)}\right\} \subset l_{\infty}$ be a Cauchy sequence. Since for sufficiently large n and $m, d\left(x^{(n)}, x^{(m)}\right)=$ $\sup _{1 \leq k \leq \infty}\left|x_{k}^{(n)}-x_{k}^{(m)}\right|<\varepsilon$, then the number sequence $x_{1}^{(n)}$ is a Cauchy sequence with limit x_{1}, the number se$1 \leq k \leq \infty$
quence $x_{2}^{(n)}$ is a Cauchy sequence with limit x_{2}, and so on. So, we arrive at the sequence $\left\{x_{k}\right\}$, which is a coordinatewise limit of $\left\{x^{(n)}\right\}$. Now we should show only that $\left\{x_{k}\right\} \in l_{\infty}$. But it follows directly from the theorem on the boundedness of any Cauchy sequence.
7. [2] p. $65 \# 4$

Suppose metric space R is complete, and let $\left\{A_{n}\right\}$ be a sequence of closed subsets of R nested in the sense that

$$
A_{1} \supset A_{2} \supset A_{3} \supset \cdots
$$

Let also the diameters tend to zero: $\lim _{n \rightarrow \infty} d\left(A_{n}\right)=0$. Prove that the intersection $\bigcap_{n=1}^{\infty} A_{n}$ is nonempty.
Solution. We construct a Cauchy sequence as follows. Let $x_{1} \in A_{1} \backslash A_{2}, x_{2} \in A_{2} \backslash A_{3}$, and so on. Since $\forall \varepsilon>0 \exists N$ such that $\forall n>N, d\left(A_{n}\right)<\varepsilon$ then also $d\left(x_{n}, x_{m}\right)<\varepsilon$ if $n, m>N$. Hence, $\left\{x_{n}\right\}$ is really a Cauchy sequence. Let x be its limit. Since A_{1} is closed and $\left\{x_{n}\right\}_{n=1}^{\infty} \subset A_{1}$ then $x \in A_{1}$ (closed sets contain the limits of their convergent subsequences). Since A_{2} is closed and $\left\{x_{n}\right\}_{n=2}^{\infty} \subset A_{2}$ then $x \in A_{2}$, and so on. Consequently, $\forall n x \in A_{n}$, or $x \in \bigcap_{n=1}^{\infty} A_{n}$.
8. [1] p. $38 \# 1$

Show that

$$
d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|
$$

defines a metric on $(0, \infty)$.
Solution. Positivity and symmetry of d are obvious. Also, $d(x, x)=0$. To see the validity of the triangle inequality, we observe that

$$
d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right| \leq\left|\frac{1}{x}-\frac{1}{z}\right|+\left|\frac{1}{z}-\frac{1}{y}\right|=d(x, z)+d(y, z)
$$

9. [1] p. $38 \# 6$

If d is any metric on M, show that $\rho(x, y)=\sqrt{d(x, y)}, \sigma(x, y)=\frac{d(x, y}{1+d(x, y)}$, and $\tau(x, y)=$ $\min \{d(x, y), 1\}$ are also metrics on M.
Solution. If $F(0)=0$ and $F(\alpha)>0$ for $\alpha>0$ then clearly $\theta=F(d)$ satisfies all the properties of metric but the triangle inequality. To find the additional conditions to be imposed on F, let us consider when $\theta(x, y) \leq$ $\theta(x, z)+\theta(y, z)$ in view of the inequality $d(x, y) \leq d(x, z)+d(y, z)$:

$$
\theta(x, y)=F(d(x, y)) \leq F(d(x, z)+d(y, z)) \leq F(d(x, z))+F(d(y, z))
$$

The first inequality holds if (1) F in non-decreasing. The second inequality holds if (2) $\forall \alpha, \beta \geq 0, F(\alpha+\beta) \leq$ $F(\alpha)+F(\beta)$. All the above functions ρ, σ, τ satisfy these two conditions. Consequently, they are metrics.
10. [1] p. $39 \# 11$

Let R^{∞} be the space of all infinite dimensional vectors $\left\{x_{n}\right\}_{n=1}^{\infty}$. Show that the expression

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{1}{n!} \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}-y_{n}\right|}
$$

defines a metric on R^{∞}.
Solution. Use the previous solution for σ applied independently to every coordinate. The series converges due to the coefficient $1 / n$!.
11. [1] p. $39 \# 12$

Check that $d(x, y)=\sup _{a \leq t \leq b}|x(t)-y(t)|$ defines a metric on $C[a, b]$, the space of all continuous functions defined on the closed interval $[a, b]$.

Solution.

$$
\begin{aligned}
d(x, y) & =\sup _{a \leq t \leq b}|x(t)-y(t)| \leq \sup _{a \leq t \leq b}(|x(t)-z(t)|+|z(t)-y(t)| \\
& \leq \sup _{a \leq t \leq b}|x(t)-z(t)|+\sup _{a \leq t \leq b}|y(t)-z(t)|=d(x, z)+d(y, z)
\end{aligned}
$$

All other properties of metric are obvious.
12. [1] p. $42 \# 23$

The subset of l_{∞} consisting of all sequences that converge to 0 is denoted by c_{0}. Show that we have the following proper set inclusions: $l_{1} \subset l_{2} \subset c_{0} \subset l_{\infty}$.
Solution. If $x \in l_{1}$ then $\sum_{n=1}^{\infty}\left|x_{n}\right|<\infty$, then $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty$, then $x_{n} \rightarrow 0$, then x_{n} is a bounded sequence. Consequently, $l_{1} \subseteq l_{2} \subseteq c_{0} \subseteq l_{\infty}$.

The inclusion is proper. Really, $(1,1,1, \ldots) \in l_{\infty} \backslash c_{0}$,
$\left\{\frac{1}{\sqrt{n}}\right\} \in c_{0} \backslash l_{2}$,
$\left\{\frac{1}{n}\right\} \in l_{2} \backslash l_{1}$.
13. [1] p. 46 \# 34

If $x_{n} \rightarrow x$ in (M, d), show that $\forall y \in M, d\left(x_{n}, y\right) \rightarrow d(x, y)$.
Solution. Look \# 4 above.
14. [1] p. 46 \# 37

A Cauchy sequence with a convergent subsequence converges.
Solution. Let x be the limit of the subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$.
Then $\forall \varepsilon>0 \exists K \forall k>K, d\left(x, x_{n_{k}}\right)<\varepsilon / 2$.
Since this is a Cauchy sequence then $\exists N=N(\varepsilon), \forall n, m>N, d\left(x_{n}, x_{m}\right)<\varepsilon / 2$.
Let $M=\max \{K, N\}$. Since $n_{k} \geq k$ then $n_{k}, m>M$, and $d\left(x, x_{m}\right) \leq d\left(x, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{m}\right)<\varepsilon$, which implies the convergence of the Cauchy sequence to x.
(bonus 1) [2] p. $53 \# 1$
Give an example of a metric space R and two open balls $B_{r_{1}}(x)$ and $B_{r_{2}}(x)$ in R such that $B_{r_{1}}(x) \subset B_{r_{2}}(y)$ although $r_{1}>r_{2}$.
Solution (Vitalii K.) As an example consider metric space $R=\{x, y, z\}$, composed of three points x, y, z. Let $z \in B_{r_{2}}(y)$ and $z \notin B_{r_{1}}(x), r_{2}<r_{1} \Rightarrow \rho(y, z)<r_{2}<r_{1}, \rho(x, z)>r_{1}>r_{2}, \rho(x, y)<r_{2}<r_{1}$. From triangle inequality

$$
\begin{equation*}
r_{1}<\rho(x, z) \leq \rho(x, y)+\rho(y, z)<2 r_{2} \tag{1}
\end{equation*}
$$

The triangle inequality determines the condition of strict inclusion $B_{r_{1}}(x) \subset B_{r_{2}}(y)$. Thus, let us assume $r_{1}=6$, $r_{2}=5, \rho(x, y)=\rho(y, z)=4, \rho(x, z)=7$. Then $B_{r_{1}}(x)=\{x, y\}, B_{r_{2}}(y)=\{x, y, z\}$. Then $B_{r_{1}}(x) \subset B_{r_{2}}(y)$. Graphically we can interpret this situation as triangle with x, y, z in its vertexes and sides $\rho(x, y)=\rho(y, z)=4$, $\rho(x, z)=7$.
(bonus 2) [2] p. $65 \# 6$
Give an example of a complete metric space R and a nested sequence $\left\{A_{n}\right\}$ of closed subsets of R such that

$$
\bigcap_{n=1}^{\infty} A_{n}=\emptyset .
$$

Reconcile this example with Problem 4.
Solution 1. Consider $R=\{1,2,3, \ldots\}$ with metric $d(x, y)=1+\frac{1}{x+y}$ for distinct x, y. This space is complete: all Cauchy sequences have stationary "tails". In this space
$\bar{B}_{4 / 3}(1)=\{1,2,3,4,5, \ldots\}$,
$\bar{B}_{6 / 5}(2)=\{2,3,4,5, \ldots\}$,
$\bar{B}_{8 / 7}(3)=\{3,4,5, \ldots\}, \ldots$.
Consequently,

$$
\bar{B}_{4 / 3}(1) \supset \bar{B}_{6 / 5}(2) \supset \bar{B}_{8 / 7}(3) \supset \ldots \supset \bar{B}_{(2 n+2) /(2 n+1)}(n) \supset \ldots
$$

However, $\bigcap_{n=1}^{\infty} \bar{B}_{(2 n+2) /(2 n+1)}(n)=\emptyset$.
Solution 2. (Vitalii K.) As an example consider metric space $\mathbf{R}=(-\infty,+\infty)$. Consider $A_{n}=\left(-\infty, a_{n}\right] \subset \mathbf{R}$, $a_{n} \rightarrow-\infty$ (for example, $a_{n}=(1,0,-2,-3 \ldots)$. Then $\left\{A_{n}\right\}$ is a nested sequence of closed subsets of \mathbf{R} :

$$
A_{1} \supset A_{2} \supset A_{3} \supset \ldots \supset A_{n} \supset \ldots
$$

Obviously,

$$
\bigcap_{n=1}^{\infty} A_{n}=\emptyset
$$

Reconciling this example with Problem 4 we see that in the suggested example $d\left(A_{n}\right)=\infty$ for all n whereas in Problem 4 assume

$$
\lim _{n \rightarrow \infty} d\left(A_{n}\right)=0
$$

Remark: unlike the first solution, the second one deals with unbounded sets, which is easier.

References

[1] Carothers N.L., Real Analysis. Cambridge University Press, 2000. ISBN 0521497493 or ISBN 0521497566.
[2] Kolmogorov, A.N., and Fomin, S.V., Introductory Real Analysis. Dover, 1970. ISBN 0486612260.
[3] Haaser, N.B., and Sullivan, J.A., Real Analysis. Dover, 1991. ISBN 0486665097.
[4] Rudin, W., Real and Complex Analysis, 3d ed. McGraw-Hills, 1987.
[5] Folland, G.B., Real Analysis. Wiley, 1984.
[6] Reed, M. and Simon, B., Methods of Modern Mathematical Physics. 1. Functional Analysis. Academic Press 1972.
[7] Oxtoby, J.C., Measure and Category. A survey of the Analogies between Topological and Measure Spaces. Springer-Verlag, 1971.

