
Ma 635. Real Analysis I. Hw2 (due 09/14). Solutions.

1. [2] p. 45 # 1
Given a metric space (X, d), prove that
(a) |d(x, z)− d(y, u)| ≤ d(x, y) + d(z, u)
(b) |d(x, z)− d(y, z)| ≤ d(x, y)
Solution. (a) The triangle inequality yields: d(x, z) ≤ d(x, y) + d(y, u) + d(u, z). Then, d(x, z) − d(y, u) ≤
d(x, y) + d(u, z). Similarly, d(y, u)− d(x, z) ≤ d(x, y) + d(u, z). The result follows from the last two inequalities.

(b) can be obtained similarly.

2. [2] p. 45 # 5
Prove that the metric in (−∞,+∞), d∞(x, y) = max

1≤k≤n
|xk−yk| is the limiting case of the metric

dp(x, y) =
(

n∑
k=1

|xk − yk|p
)1/p

as p →∞.

Solution. Let max
1≤k≤n

|xk − yk| be attained at k = k0: max
1≤k≤n

|xk − yk| = |xk0 − yk0 |. Then

(
n∑

k=1

|xk − yk|p
)1/p

= |xk0 − yk0 |
(

n∑
k=1

∣∣∣∣
xk − yk

xk0 − yk0

∣∣∣∣
p
)1/p

≤ |xk0 − yk0 |n1/p → |xk0 − yk0 |.
From another point of view,

(
n∑

k=1

|xk − yk|p
)1/p

≥
(
|xk0 − yk0 |p

)1/p
= |xk0 − yk0 |.

From two last expressions we arrive at the solution.

3. [2] p. 45 # 8
Exhibit an isometry between the spaces C[0, 1] and C[1, 2].
Solution. Let f : C[0, 1] 7→ C[1, 2] as follows: f(x)(t) = x(t + 1). Clearly,

d(f(x), f(y)) = sup
1≤t≤2

|f(x)(t)− f(y)(t)| = sup
0≤t≤1

|x(t)− y(t)| = d(x, y).

Hence, f is an isometry.

4. [2] p. 54 # 3
Prove that if xn → x, yn → y as n →∞ then d(xn, yn) → d(x, y).
Solution. From the corollary from triangle inequality, |d(xn, yn)− d(x, y)| ≤ d(xn, x) + d(yn, y) → 0.

5. [2] p. 54 # 7
Solution. In the ternary number system,

(
1
4

)
10

=
(

1
11

)
3

= 0.02020202... which has no ones. Since in the ternary

system the elements of the Cantor discontinuum and only they are presented by ternary fractions without ones,

then 1/4 belongs to the Cantor set.

6. [2] p. 65 # 2
Prove that space m = l∞ of bounded sequences with metric d(x, y) = sup

1≤k≤∞
|xk − yk| is com-

plete.
Solution. Let

{
x(n)

}
⊂ l∞ be a Cauchy sequence. Since for sufficiently large n and m, d(x(n), x(m)) =

sup
1≤k≤∞

|x(n)
k

− x
(m)
k

| < ε, then the number sequence x
(n)
1 is a Cauchy sequence with limit x1, the number se-

quence x
(n)
2 is a Cauchy sequence with limit x2, and so on. So, we arrive at the sequence {xk}, which is a

coordinatewise limit of
{

x(n)
}

. Now we should show only that {xk} ∈ l∞. But it follows directly from the

theorem on the boundedness of any Cauchy sequence.
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7. [2] p. 65 # 4
Suppose metric space R is complete, and let {An} be a sequence of closed subsets of R nested
in the sense that

A1 ⊃ A2 ⊃ A3 ⊃ · · ·

Let also the diameters tend to zero: lim
n→∞

d(An) = 0. Prove that the intersection
∞⋂

n=1
An is

nonempty.
Solution. We construct a Cauchy sequence as follows. Let x1 ∈ A1 \ A2, x2 ∈ A2 \ A3, and so on. Since

∀ε > 0 ∃N such that ∀n > N, d(An) < ε then also d(xn, xm) < ε if n, m > N . Hence, {xn} is really a Cauchy

sequence. Let x be its limit. Since A1 is closed and {xn}∞n=1 ⊂ A1 then x ∈ A1 (closed sets contain the limits

of their convergent subsequences). Since A2 is closed and {xn}∞n=2 ⊂ A2 then x ∈ A2, and so on. Consequently,

∀n x ∈ An, or x ∈
∞⋂

n=1

An.

8. [1] p. 38 # 1
Show that

d(x, y) =
∣∣∣∣
1
x
− 1

y

∣∣∣∣
defines a metric on (0,∞).
Solution. Positivity and symmetry of d are obvious. Also, d(x, x) = 0. To see the validity of the triangle
inequality, we observe that

d(x, y) =

∣∣∣ 1

x
− 1

y

∣∣∣ ≤
∣∣∣ 1

x
− 1

z

∣∣∣ +

∣∣∣1

z
− 1

y

∣∣∣ = d(x, z) + d(y, z).

9. [1] p. 38 # 6
If d is any metric on M , show that ρ(x, y) =

√
d(x, y), σ(x, y) = d(x,y

1+d(x,y) , and τ(x, y) =
min{d(x, y), 1} are also metrics on M .
Solution. If F (0) = 0 and F (α) > 0 for α > 0 then clearly θ = F (d) satisfies all the properties of metric but
the triangle inequality. To find the additional conditions to be imposed on F , let us consider when θ(x, y) ≤
θ(x, z) + θ(y, z) in view of the inequality d(x, y) ≤ d(x, z) + d(y, z):

θ(x, y) = F (d(x, y)) ≤ F (d(x, z) + d(y, z)) ≤ F (d(x, z)) + F (d(y, z)).

The first inequality holds if (1) F in non-decreasing. The second inequality holds if (2) ∀α, β ≥ 0, F (α + β) ≤
F (α) + F (β). All the above functions ρ, σ, τ satisfy these two conditions. Consequently, they are metrics.

10. [1] p. 39 # 11
Let R∞ be the space of all infinite dimensional vectors {xn}∞n=1. Show that the expression

d(x, y) =
∞∑

n=1

1
n!

|xn − yn|
1 + |xn − yn|

defines a metric on R∞.
Solution. Use the previous solution for σ applied independently to every coordinate. The series converges due

to the coefficient 1/n!.

11. [1] p. 39 # 12
Check that d(x, y) = sup

a≤t≤b
|x(t) − y(t)| defines a metric on C[a, b], the space of all continuous

functions defined on the closed interval [a, b].
Solution.

d(x, y) = sup
a≤t≤b

|x(t)− y(t)| ≤ sup
a≤t≤b

(|x(t)− z(t)|+ |z(t)− y(t)|

≤ sup
a≤t≤b

|x(t)− z(t)|+ sup
a≤t≤b

|y(t)− z(t)| = d(x, z) + d(y, z).

All other properties of metric are obvious.
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12. [1] p. 42 # 23
The subset of l∞ consisting of all sequences that converge to 0 is denoted by c0. Show that we
have the following proper set inclusions: l1 ⊂ l2 ⊂ c0 ⊂ l∞.

Solution. If x ∈ l1 then
∞∑

n=1

|xn| < ∞, then
∞∑

n=1

|xn|2 < ∞, then xn → 0, then xn is a bounded sequence.

Consequently, l1 ⊆ l2 ⊆ c0 ⊆ l∞.

The inclusion is proper. Really, (1, 1, 1, . . .) ∈ l∞ \ c0,

{ 1√
n
} ∈ c0 \ l2,

{ 1
n
} ∈ l2 \ l1.

13. [1] p. 46 # 34
If xn → x in (M,d), show that ∀y ∈ M, d(xn, y) → d(x, y).
Solution. Look # 4 above.

14. [1] p. 46 # 37
A Cauchy sequence with a convergent subsequence converges.
Solution. Let x be the limit of the subsequence {xnk}∞k=1.

Then ∀ε > 0 ∃K ∀k > K, d(x, xnk ) < ε/2.

Since this is a Cauchy sequence then ∃N = N(ε), ∀n, m > N, d(xn, xm) < ε/2.

Let M = max{K, N}. Since nk ≥ k then nk, m > M , and d(x, xm) ≤ d(x, xnk ) + d(xnk , xm) < ε, which implies

the convergence of the Cauchy sequence to x.

(bonus 1) [2] p. 53 #1
Give an example of a metric space R and two open balls Br1(x) and Br2(x) in R such that
Br1(x) ⊂ Br2(y) although r1 > r2.
Solution (Vitalii K.) As an example consider metric space R = {x, y, z}, composed of three points x, y, z. Let
z ∈ Br2 (y) and z /∈ Br1 (x), r2 < r1 ⇒ ρ(y, z) < r2 < r1, ρ(x, z) > r1 > r2, ρ(x, y) < r2 < r1. From triangle
inequality

r1 < ρ(x, z) ≤ ρ(x, y) + ρ(y, z) < 2r2 (1)

The triangle inequality determines the condition of strict inclusion Br1 (x) ⊂ Br2 (y). Thus, let us assume r1 = 6,

r2 = 5, ρ(x, y) = ρ(y, z) = 4, ρ(x, z) = 7. Then Br1 (x) = {x, y}, Br2 (y) = {x, y, z}. Then Br1 (x) ⊂ Br2 (y).

Graphically we can interpret this situation as triangle with x, y, z in its vertexes and sides ρ(x, y) = ρ(y, z) = 4,

ρ(x, z) = 7.

(bonus 2) [2] p. 65 # 6
Give an example of a complete metric space R and a nested sequence {An} of closed subsets of
R such that ∞⋂

n=1

An = ∅.

Reconcile this example with Problem 4.
Solution 1. Consider R = {1, 2, 3, . . .} with metric d(x, y) = 1 + 1

x+y
for distinct x, y. This space is complete:

all Cauchy sequences have stationary ”tails”. In this space
B4/3(1) = {1, 2, 3, 4, 5, . . .},
B6/5(2) = {2, 3, 4, 5, . . .},
B8/7(3) = {3, 4, 5, . . .},....
Consequently,

B4/3(1) ⊃ B6/5(2) ⊃ B8/7(3) ⊃ . . . ⊃ B(2n+2)/(2n+1)(n) ⊃ . . . .

However,
∞⋂

n=1

B(2n+2)/(2n+1)(n) = ∅.

Solution 2. (Vitalii K.) As an example consider metric space R = (−∞, +∞). Consider An = (−∞, an] ⊂ R,
an → −∞ (for example, an = (1, 0,−2,−3...). Then {An} is a nested sequence of closed subsets of R:

A1 ⊃ A2 ⊃ A3 ⊃ ... ⊃ An ⊃ ...
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Obviously,
∞⋂

n=1

An = ∅.

Reconciling this example with Problem 4 we see that in the suggested example d(An) = ∞ for all n whereas in
Problem 4 assume

lim
n→∞

d(An) = 0.

Remark: unlike the first solution, the second one deals with unbounded sets, which is easier.
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