Ma 635. Real Analysis I. Hw4

HW 4 (due 09/28):

1. [1] p. $66 \# 25$

A function $f:(M, d) \mapsto(N, \rho)$ is called Lipshitz if $\exists K, \forall x, y \in M, \rho(f(x), f(y)) \leq K d(x, y)$. Prove that Lipshitz mapping is continuous.
2. [1] p. $66 \# 28$

Let $g: l_{2} \mapsto R, g(x)=\sum_{n=1}^{\infty} \frac{x_{n}}{n}$. Is g continuous?
3. [1] p. $66 \# 29$

Fix $y \in l_{\infty}$ and define $h: l_{1} \mapsto l_{1}$ by $h(x)=\left(x_{n} y_{n}\right)_{n=1}^{\infty}$. Show that h is continuous.
4. [1] p. $71 \# 43$
5. [1] p. $71 \# 45$

Prove that N with usual metric is homeomorphic to $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ with usual metric.
6. [1] p. $71 \# 49$

Let V be a normed vector space. Given a fixed vector $y \in V$, show that the map $f(x)=x+y$ (translation ny y) is an isometry on V. Given a nonzero scalar $\alpha \in R$, show that the map $g(x)=\alpha x$ (dilation by α) is a homeomorphism on V.
7. [1] prove theorem 5.10 (p. 75)
8. [1] p. $75 \# 62$
9. [1] p. $94 \# 13$

Show that R endowed with the metric $\rho(x, y)=|\arctan x-\arctan y|$ is not complete. How about $\tau(x, y)=\left|x^{3}-y^{3}\right|$?
10. [1] p. $94 \# 14$

If we define $d(m, n)=\left|\frac{1}{m}-\frac{1}{n}\right|$ for $m, n \in N$, show that d is equivalent to the usual metric on N but (N, d) is not complete.
11. [1] p. 94 \# 19

Show that c_{0} is closed in l_{∞}.
12. [1] p. $94 \# 20$
13. [1] p. 94 \# 21
14. [1] p. $102 \# 42$

Define $T: C[0,1] \mapsto C[0,1]$ by $T f(x)=\int_{0}^{x} f(t) d t$. Show that T^{2} is a contraction. What is its fixed point?
15. To solve equation $f(x)=\lambda \int_{0}^{2}(x+y) f(y) d y$, we consider $f \in C[0,2]$ and $F(f)(x)=1+\lambda \int_{0}^{2}(x+y) f(y) d y$. Find λ at which $F: C[0,2] \mapsto C[0,2]$ is contractive. For initial value $f(x)=0$ perform 3 iterations to approach the solution $f(x)$.
(!) Please read the corresponding sections of the textbook.

References

[1] Carothers N.L., Real Analysis. Cambridge University Press, 2000. ISBN 0521497493 or ISBN 0521497566.
[2] Kolmogorov, A.N., and Fomin, S.V., Introductory Real Analysis. Dover, 1970. ISBN 0486612260.
[3] Haaser, N.B., and Sullivan, J.A., Real Analysis. Dover, 1991. ISBN 0486665097.
[4] Rudin, W., Real and Complex Analysis, 3d ed. McGraw-Hills, 1987.
[5] Folland, G.B., Real Analysis. Wiley, 1984.
[6] Reed, M. and Simon, B., Methods of Modern Mathematical Physics. 1. Functional Analysis. Academic Press 1972.
[7] Oxtoby, J.C., Measure and Category. A survey of the Analogies between Topological and Measure Spaces. Springer-Verlag, 1971.

