
Ma 635. Real Analysis I. Hw5, due 10/05.

HW 5. (due 10/05). Solutions.

1. [1] p. 92 # 9
Give an example of a closed bounded subset of l∞ that is not totally bounded.
Solution. Just the set of unit coordinate vectors like (0, 0, 1, 0, 0, . . .).

2. [1] p. 110 # 12
Show that the set A = {x ∈ l2 : |xn| ≤ 1

n} is compact in l2.
Done in class, compare with the next problem.

3. [1] p. 110 # 14
Show that the Hilbert cube H∞ = {x = (xn)∞n=1, |xn| ≤ 1} is compact if

d(x, y) =
∞∑

n=1

|xn − yn|
2n

.

Solution. ∀ ε we first choose N such that
∑∞

n=N+1
1
2n < ε/2 (for example, N > log2

1
ε
). Then for every coordi-

nate from 1 to N we choose 2N +1 grid points ± kε
2N

that are distant by ε/(2N) from each other, −N ≤ k ≤ N . To

form the ε-net, we pick up all possible grid points for first N coordinates, and zeros for the remaining infinite ”tail”.

4. [1] p. 110 # 17
If M is compact, show that M is also separable.
Solution. In view of total boundedness, for any εn = 1, 1

2
, 1
3
, . . . , 1

n
, . . . the exists a bounded εn-net. The union

of these εn-nets is just a dense countable subset.

5. [1] p. 110 # 18
M has a countable open base if and only if M is separable.
Solution. (=⇒) If M has a countable open base, we choose a point inside each element of the base. These points

form a dense and separable subset.

(⇐=) If M is separable then consider the collection of open balls with rational radiuses centered at the elements

of the dense countable subset of M .

6. [1] p. 111 # 23
If M is compact and f : M 7→ N is a continuous bijection then M is homeomorphism.
Solution. We need to show only that f−1 is also continuous. Let yn → y in N . Consider xn - their pre-images

in M , xn = f−1(yn), x = f−1(y). Since M is compact then sequence {xn} contains a converging subsequence

{xnk with limit, say, z. Since f is continuous then f(xnk ) → f(z), or f(ynk ) → f(z). However, since yn → y

then also ynk → y and, hence, f(z) = y. Then z = f−1(y) = x. Consequently, xnk → x. Consider the terms

of {xn} outside the subsequence {xnk}. Because of the above argument, those remaining terms cannot have a

subsequence that converges to a value other than x. Since all converging subsequences of {xn} converge to x,

then xn → x, which proves the continuity of f−1.

7. [1] p. 114 # 34
A is closed in M ⇐⇒ A ∩K is compact ∀K-compact.
Solution. (=⇒) As a subset of K, A ∩ K is totally bounded. As an intersection of two closed sets, A ∩ K is

closed. Then it is compact.

(⇐=) We consider a Cauchy sequence {xn} ⊂ A. Let K = {xn} ∪ x where x is the limit of xn. Since A ∩K is

compact then x ∈ A.

8 [1] p. 114 # 35
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Every open cover G of compactum M has a Lebesgue number L(G) > 0. By definition,

L(G) = inf
ε>0
{∀Bε ⊂ M ∃G ∈ G : Bε ⊆ G}.

Solution. If a cover G has no positive Lebesgue number, then it is equal to zero. Then ∀ {εn}∞n=1, εn → 0,

∃Bεn ⊂ M such that ∀G ∈ G, Bεn 6⊂ G. Let {Gn}N
n=1 be a finite open subcover of G that covers M . We

consider the open subsets Dn = Bεn \Gn. They are non-empty (otherwise Bεn ⊂ Gn). Their intersection is also

non-empty (why?). Then
⋂N

n=1
Dn 6⊂ M , which contradicts the inclusion Dn ⊆ M for all n.

9 [1] p. 114 # 36

10 [2], p. 81, # 4.
Show that E = {1/n : n a positive integer } is not compact in R but E ∪ {0} is compact.

11 [2], p. 81, # 7.
Prove that every finite subset of a metric space is compact.
Solution. Any sequence from a finite subset contains a stationary subsequence, which is convergent.

12 [2], p. 81, # 6.
Show that a discrete metric space M is not compact unless X is finite.
Solution. Let xn be a countable infinite sequence in M . Since the distance between any two points is equal to

1, this sequence has no converging subsequence and, thus, is not compact.

13 [2], p. 81, # 9
If X is compact prove that C(X,R) is a complete metric space.
Slightly modify the theorem from Advanced Calculus that states that the uniform convergence of continuous

functions yield a continuous function as the pointwise limit.

14 [2], p. 81, # 10
Is C[0, 1] compact?
No, xn(t) = tn is a not relatively compact subset, its pointwise limit is a discontinuous function.

15. [2], p. 84, # 4 Prove that any compact metric space has a dense countable subset.
See # 4.

16. [3], p. 115, # 5
Let X be a metric compactum and A : X 7→ X such that d(Ax, Ay) < d(x, y) if x 6= y. Prove
that A has a unique fixed point.
Solution. Consider arbitrary x0 and let xn = Ax0. Let d1 = d(x0, x1), d2 = d(x1, x2), . . .. As we know,
d1 > d2 > d3 > · · ·. Since X is compact, we pick up xnk - a converging subsequence of {xn}, xnk → z0 as
k → ∞. That implies d(xnk , xnm ) → 0 as k, m → ∞. We consider the sequence Axnk = xnk+1. From the
problem statement, d(Axnk , Axnm ) < d(xnk , xnm ) → 0. Hence, the sequence Axnk+1 is also a Cauchy sequence,
let its limit be z1. Similarly, we obtain ∃ lim xnk+2 = z2, ∃ lim xnk+3 = z3, and so on. The number of limit
points z0, z1, z2, . . . cannot exceed nk+1 − nk since the sequence xnk+1 is just xnk and, hence, xnk+1 → z0. So,
we have limit points z0, z1, . . . , zp. The condition d(Ax, Ay) < d(x, y) implies that A is a continuous mapping.
Since xnk → z0 then Axnk → Az0. Consequently, z1 = Az0. Similarly, z2 = Az1, z3 = Az2, z0 = Azp. However,
the condition d(Ax, Ay) < d(x, y) implies that there may not be a periodic orbit. Really,

d(z1, z0) = d(Az0, Azp) < d(z0, zp) = d(Azp, Azp−1) < · · · < d(z2, z1) = d(Az1, Az0) < d(z1, z0).

The contradiction d(z1, z0) < d(z1, z0) proves the absence of any periodic orbit. So, z0 = z1 = . . . = zp is the

only fixed point: z0 = Az0.

17. Prove that a uniformly bounded set of functions in C[a, b], which satisfy the Lipshitz
condition with the same common constant, is compact in C[a, b].
x(t) satisfies the Lipshitz condition with constant L if ∀t, s : |x(t)− x(s)| ≤ C|t− s|.
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18. Determine whether the following sets in C[0, 1] are relatively compact (pre-compact):
(a) xn(t) = sin(nt)
Not relatively compact: [sin(nt)]′ = n cos(nt) = n →∞ at t = 0.

(b) xn(t) = sin(t + n)
This set is pre-compact: |x′n(t)| = | cos(t + n)| ≤ 1. Uniform boundedness of slopes implies equicontinuity.

(c) xα(t) = arctan(αt), α ∈ R
Not pre-compact. Do like in (a)

(d) xα(t) = et−α, α ∈ R, α ≥ 0.
Pre-compact. |x′α(t)| = et−α ≤ e since 0 ≤ t ≤ 1.

Bonus 2: Prove that the condition d(f(x), f(y)) < d(x, y), x 6= y, is insufficient for the existence
of a fixed point of function f .
Solution. Consider in usual metric f : [0,∞) 7→ [0,∞), f(x) = x+ 1

x+1
. The graph y = f(x) is above the bisector

y = x and approaches it as x →∞. Its slope is positive but less than 1 at all points. Hence, d(f(x), f(y)) < d(x, y).

Bonus 3; [1] p. 111 # 24.
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