Ma 635. Real Analysis I. Hw5, due 10/05.

HW 5. (due 10/05). Solutions.

1. [1] p. 92 # 9

Give an example of a closed bounded subset of l_{∞} that is not totally bounded. Solution. Just the set of unit coordinate vectors like (0, 0, 1, 0, 0, ...).

2. [1] p. 110 # 12 Show that the set $A = \{x \in l_2 : |x_n| \le \frac{1}{n}\}$ is compact in l_2 . Done in class, compare with the next problem.

3. [1] p. 110 # 14 Show that the Hilbert cube $H^{\infty} = \{x = (x_n)_{n=1}^{\infty}, |x_n| \leq 1\}$ is compact if

$$d(x,y) = \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n}.$$

Solution. $\forall \varepsilon$ we first choose N such that $\sum_{n=N+1}^{\infty} \frac{1}{2^n} < \varepsilon/2$ (for example, $N > \log_2 \frac{1}{\varepsilon}$). Then for every coordinate from 1 to N we choose 2N+1 grid points $\pm \frac{k\varepsilon}{2N}$ that are distant by $\varepsilon/(2N)$ from each other, $-N \le k \le N$. To form the ε -net, we pick up all possible grid points for first N coordinates, and zeros for the remaining infinite "tail".

4. [1] p. 110 # 17

If M is compact, show that M is also separable.

Solution. In view of total boundedness, for any $\varepsilon_n = 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$ the exists a bounded ε_n -net. The union of these ε_n -nets is just a dense countable subset.

5. [1] p. 110 # 18

M has a countable open base if and only if M is separable.

Solution. (\Longrightarrow) If *M* has a countable open base, we choose a point inside each element of the base. These points form a dense and separable subset.

(\Leftarrow) If *M* is separable then consider the collection of open balls with rational radiuses centered at the elements of the dense countable subset of *M*.

6. [1] p. 111 # 23

If M is compact and $f: M \mapsto N$ is a continuous bijection then M is homeomorphism.

Solution. We need to show only that f^{-1} is also continuous. Let $y_n \to y$ in N. Consider x_n - their pre-images in M, $x_n = f^{-1}(y_n)$, $x = f^{-1}(y)$. Since M is compact then sequence $\{x_n\}$ contains a converging subsequence $\{x_{n_k} \text{ with limit, say, } z$. Since f is continuous then $f(x_{n_k}) \to f(z)$, or $f(y_{n_k}) \to f(z)$. However, since $y_n \to y$ then also $y_{n_k} \to y$ and, hence, f(z) = y. Then $z = f^{-1}(y) = x$. Consequently, $x_{n_k} \to x$. Consider the terms of $\{x_n\}$ outside the subsequence $\{x_{n_k}\}$. Because of the above argument, those remaining terms cannot have a subsequence that converges to a value other than x. Since all converging subsequences of $\{x_n\}$ converge to x, then $x_n \to x$, which proves the continuity of f^{-1} .

7. [1] p. 114 # 34

A is closed in $M \iff A \cap K$ is compact $\forall K$ -compact.

Solution. (\Longrightarrow) As a subset of $K, A \cap K$ is totally bounded. As an intersection of two closed sets, $A \cap K$ is closed. Then it is compact.

(\Leftarrow) We consider a Cauchy sequence $\{x_n\} \subset A$. Let $K = \{x_n\} \cup x$ where x is the limit of x_n . Since $A \cap K$ is compact then $x \in A$.

8 [1] p. 114 # 35

Every open cover \mathcal{G} of compactum M has a Lebesgue number $L(\mathcal{G}) > 0$. By definition,

$$L(\mathcal{G}) = \inf_{\varepsilon > 0} \{ \forall B_{\varepsilon} \subset M \; \exists G \in \mathcal{G} : \; B_{\varepsilon} \subseteq G \}.$$

Solution. If a cover \mathcal{G} has no positive Lebesgue number, then it is equal to zero. Then $\forall \{\varepsilon_n\}_{n=1}^{\infty}, \varepsilon_n \to 0, \exists B_{\varepsilon_n} \subset M$ such that $\forall G \in \mathcal{G}, B_{\varepsilon_n} \notin G$. Let $\{G_n\}_{n=1}^N$ be a finite open subcover of \mathcal{G} that covers M. We consider the open subsets $D_n = B_{\varepsilon_n} \setminus G_n$. They are non-empty (otherwise $B_{\varepsilon_n} \subset G_n$). Their intersection is also non-empty (why?). Then $\bigcap_{n=1}^N D_n \notin M$, which contradicts the inclusion $D_n \subseteq M$ for all n.

9 [1] p. 114 # 36

10 [2], p. 81, # 4. Show that $E = \{1/n : n \text{ a positive integer }\}$ is not compact in **R** but $E \cup \{0\}$ is compact.

11 [2], p. 81, # 7.

Prove that every finite subset of a metric space is compact. Solution. Any sequence from a finite subset contains a stationary subsequence, which is convergent.

12 [2], p. 81, # 6.

Show that a discrete metric space M is not compact unless X is finite.

Solution. Let x_n be a countable infinite sequence in M. Since the distance between any two points is equal to 1, this sequence has no converging subsequence and, thus, is not compact.

13 [2], p. 81, # 9

If X is compact prove that $C(X,{\bf R})$ is a complete metric space.

Slightly modify the theorem from Advanced Calculus that states that the uniform convergence of continuous functions yield a continuous function as the pointwise limit.

14 [2], p. 81, # 10

Is C[0,1] compact?

No, $x_n(t) = t^n$ is a not relatively compact subset, its pointwise limit is a discontinuous function.

15. [2], p. 84, # 4 Prove that any compact metric space has a dense countable subset. See # 4.

16. [3], p. 115, # 5

Let X be a metric compactum and $A : X \mapsto X$ such that d(Ax, Ay) < d(x, y) if $x \neq y$. Prove that A has a unique fixed point.

Solution. Consider arbitrary x_0 and let $x_n = Ax_0$. Let $d_1 = d(x_0, x_1)$, $d_2 = d(x_1, x_2)$,.... As we know, $d_1 > d_2 > d_3 > \cdots$. Since X is compact, we pick up x_{n_k} - a converging subsequence of $\{x_n\}$, $x_{n_k} \to z_0$ as $k \to \infty$. That implies $d(x_{n_k}, x_{n_m}) \to 0$ as $k, m \to \infty$. We consider the sequence $Ax_{n_k} = x_{n_k+1}$. From the problem statement, $d(Ax_{n_k}, Ax_{n_m}) < d(x_{n_k}, x_{n_m}) \to 0$. Hence, the sequence Ax_{n_k+1} is also a Cauchy sequence, let its limit be z_1 . Similarly, we obtain $\exists \lim x_{n_k+2} = z_2$, $\exists \lim x_{n_k+3} = z_3$, and so on. The number of limit points z_0, z_1, z_2, \ldots cannot exceed $n_{k+1} - n_k$ since the sequence $x_{n_{k+1}}$ is just x_{n_k} and, hence, $x_{n_{k+1}} \to z_0$. So, we have limit points z_0, z_1, \ldots, z_p . The condition d(Ax, Ay) < d(x, y) implies that A is a continuous mapping. Since $x_{n_k} \to z_0$ then $Ax_{n_k} \to Az_0$. Consequently, $z_1 = Az_0$. Similarly, $z_2 = Az_1, z_3 = Az_2, z_0 = Az_p$. However, the condition d(Ax, Ay) < d(x, y) implies that there may not be a periodic orbit. Really,

$$d(z_1, z_0) = d(Az_0, Az_p) < d(z_0, z_p) = d(Az_p, Az_{p-1}) < \dots < d(z_2, z_1) = d(Az_1, Az_0) < d(z_1, z_0).$$

The contradiction $d(z_1, z_0) < d(z_1, z_0)$ proves the absence of any periodic orbit. So, $z_0 = z_1 = \ldots = z_p$ is the only fixed point: $z_0 = Az_0$.

17. Prove that a uniformly bounded set of functions in C[a, b], which satisfy the Lipshitz condition with the same common constant, is compact in C[a, b].

 $x(t) \text{ satisfies the Lipshitz condition with constant } L \text{ if } \forall t,s: \ |x(t) - x(s)| \leq C |t-s|.$

18. Determine whether the following sets in C[0,1] are relatively compact (pre-compact): (a) $x_n(t) = \sin(nt)$

Not relatively compact: $[\sin(nt)]' = n \cos(nt) = n \to \infty$ at t = 0.

(b) $x_n(t) = \sin(t+n)$

This set is pre-compact: $|x'_n(t)| = |\cos(t+n)| \le 1$. Uniform boundedness of slopes implies equicontinuity.

(c) $x_{\alpha}(t) = \arctan(\alpha t), \ \alpha \in \mathbf{R}$ Not pre-compact. Do like in (a)

(d) $x_{\alpha}(t) = e^{t-\alpha}, \ \alpha \in \mathbf{R}, \ \alpha \ge 0.$ Pre-compact. $|x'_{\alpha}(t)| = e^{t-\alpha} \le e \text{ since } 0 \le t \le 1.$

Bonus 2: Prove that the condition $d(f(x), f(y)) < d(x, y), x \neq y$, is insufficient for the existence of a fixed point of function f. **Solution.** Consider in usual metric $f: [0, \infty) \mapsto [0, \infty), f(x) = x + \frac{1}{x+1}$. The graph y = f(x) is above the bisector y = x and approaches it as $x \to \infty$. Its slope is positive but less than 1 at all points. Hence, d(f(x), f(y)) < d(x, y).

Bonus 3; [1] p. 111 # 24.

References

- Carothers N.L., *Real Analysis*. Cambridge University Press, 2000. ISBN 0521497493 or ISBN 0521497566.
- [2] Kolmogorov, A.N., and Fomin, S.V., Introductory Real Analysis. Dover, 1970. ISBN 0486612260.
- [3] Haaser, N.B., and Sullivan, J.A., *Real Analysis*. Dover, 1991. ISBN 0486665097.
- [4] Rudin, W., Real and Complex Analysis, 3d ed. McGraw-Hills, 1987.
- [5] Folland, G.B., Real Analysis. Wiley, 1984.
- [6] Reed, M. and Simon, B., Methods of Modern Mathematical Physics. 1. Functional Analysis. Academic Press 1972.
- [7] Oxtoby, J.C., Measure and Category. A survey of the Analogies between Topological and Measure Spaces. Springer-Verlag, 1971.