Ma 635. Real Analysis I. Hw5, due 10/05.

HW 5. (due 10/05). Solutions.

1. [1] p. $92 \# 9$

Give an example of a closed bounded subset of l_{∞} that is not totally bounded.
Solution. Just the set of unit coordinate vectors like ($0,0,1,0,0, \ldots$).
2. [1] p. $110 \# 12$

Show that the set $A=\left\{x \in l_{2}:\left|x_{n}\right| \leq \frac{1}{n}\right\}$ is compact in l_{2}.
Done in class, compare with the next problem.
3. [1] p. $110 \# 14$

Show that the Hilbert cube $H^{\infty}=\left\{x=\left(x_{n}\right)_{n=1}^{\infty},\left|x_{n}\right| \leq 1\right\}$ is compact if

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{\left|x_{n}-y_{n}\right|}{2^{n}}
$$

Solution. $\forall \varepsilon$ we first choose N such that $\sum_{n=N+1}^{\infty} \frac{1}{2^{n}}<\varepsilon / 2$ (for example, $N>\log _{2} \frac{1}{\varepsilon}$). Then for every coordinate from 1 to N we choose $2 N+1$ grid points $\pm \frac{k \varepsilon}{2 N}$ that are distant by $\varepsilon /(2 N)$ from each other, $-N \leq k \leq N$. To form the ε-net, we pick up all possible grid points for first N coordinates, and zeros for the remaining infinite "tail".

$$
\text { 4. [1] p. } 110 \text { \# } 17
$$

If M is compact, show that M is also separable.
Solution. In view of total boundedness, for any $\varepsilon_{n}=1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots$ the exists a bounded ε_{n}-net. The union of these ε_{n}-nets is just a dense countable subset.
5. [1] p. 110 \# 18
M has a countable open base if and only if M is separable.
Solution. (\Longrightarrow) If M has a countable open base, we choose a point inside each element of the base. These points form a dense and separable subset.
(\Longleftarrow) If M is separable then consider the collection of open balls with rational radiuses centered at the elements of the dense countable subset of M.

6. [1] p. 111 \# 23

If M is compact and $f: M \mapsto N$ is a continuous bijection then M is homeomorphism.
Solution. We need to show only that f^{-1} is also continuous. Let $y_{n} \rightarrow y$ in N. Consider x_{n} - their pre-images in $M, x_{n}=f^{-1}\left(y_{n}\right), x=f^{-1}(y)$. Since M is compact then sequence $\left\{x_{n}\right\}$ contains a converging subsequence $\left\{x_{n_{k}}\right.$ with limit, say, z. Since f is continuous then $f\left(x_{n_{k}}\right) \rightarrow f(z)$, or $f\left(y_{n_{k}}\right) \rightarrow f(z)$. However, since $y_{n} \rightarrow y$ then also $y_{n_{k}} \rightarrow y$ and, hence, $f(z)=y$. Then $z=f^{-1}(y)=x$. Consequently, $x_{n_{k}} \rightarrow x$. Consider the terms of $\left\{x_{n}\right\}$ outside the subsequence $\left\{x_{n_{k}}\right\}$. Because of the above argument, those remaining terms cannot have a subsequence that converges to a value other than x. Since all converging subsequences of $\left\{x_{n}\right\}$ converge to x, then $x_{n} \rightarrow x$, which proves the continuity of f^{-1}.

7. [1] p. 114 \# 34

A is closed in $M \Longleftrightarrow A \cap K$ is compact $\forall K$-compact.
Solution. (\Longrightarrow) As a subset of $K, A \cap K$ is totally bounded. As an intersection of two closed sets, $A \cap K$ is closed. Then it is compact.
(\Longleftarrow) We consider a Cauchy sequence $\left\{x_{n}\right\} \subset A$. Let $K=\left\{x_{n}\right\} \cup x$ where x is the limit of x_{n}. Since $A \cap K$ is compact then $x \in A$.

8 [1] p. $114 \# 35$

Every open cover \mathcal{G} of compactum M has a Lebesgue number $L(\mathcal{G})>0$. By definition,

$$
L(\mathcal{G})=\inf _{\varepsilon>0}\left\{\forall B_{\varepsilon} \subset M \exists G \in \mathcal{G}: B_{\varepsilon} \subseteq G\right\}
$$

Solution. If a cover \mathcal{G} has no positive Lebesgue number, then it is equal to zero. Then $\forall\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}, \varepsilon_{n} \rightarrow 0$, $\exists B_{\varepsilon_{n}} \subset M$ such that $\forall G \in \mathcal{G}, B_{\varepsilon_{n}} \not \subset G$. Let $\left\{G_{n}\right\}_{n=1}^{N}$ be a finite open subcover of \mathcal{G} that covers M. We consider the open subsets $D_{n}=B_{\varepsilon_{n}} \backslash G_{n}$. They are non-empty (otherwise $B_{\varepsilon_{n}} \subset G_{n}$). Their intersection is also non-empty (why?). Then $\bigcap_{n=1}^{N} D_{n} \not \subset M$, which contradicts the inclusion $D_{n} \subseteq M$ for all n.

9 [1] p. $114 \# 36$
10 [2], p. 81, \# 4.
Show that $E=\{1 / n: n$ a positive integer $\}$ is not compact in \mathbf{R} but $E \cup\{0\}$ is compact.
11 [2], p. 81, \# 7.
Prove that every finite subset of a metric space is compact.
Solution. Any sequence from a finite subset contains a stationary subsequence, which is convergent.
12 [2], p. 81, \# 6.
Show that a discrete metric space M is not compact unless X is finite.
Solution. Let x_{n} be a countable infinite sequence in M. Since the distance between any two points is equal to 1 , this sequence has no converging subsequence and, thus, is not compact.

13 [2], p. 81, \# 9
If X is compact prove that $C(X, \mathbf{R})$ is a complete metric space.
Slightly modify the theorem from Advanced Calculus that states that the uniform convergence of continuous functions yield a continuous function as the pointwise limit.

14 [2], p. 81, \# 10
Is $C[0,1]$ compact?
No, $x_{n}(t)=t^{n}$ is a not relatively compact subset, its pointwise limit is a discontinuous function.
15. [2], p. 84, \# 4 Prove that any compact metric space has a dense countable subset.

See \# 4 .
16. [3], p. 115, \# 5

Let X be a metric compactum and $A: X \mapsto X$ such that $d(A x, A y)<d(x, y)$ if $x \neq y$. Prove that A has a unique fixed point.
Solution. Consider arbitrary x_{0} and let $x_{n}=A x_{0}$. Let $d_{1}=d\left(x_{0}, x_{1}\right), d_{2}=d\left(x_{1}, x_{2}\right), \ldots$. As we know, $d_{1}>d_{2}>d_{3}>\cdots$. Since X is compact, we pick up $x_{n_{k}}$ - a converging subsequence of $\left\{x_{n}\right\}, x_{n_{k}} \rightarrow z_{0}$ as $k \rightarrow \infty$. That implies $d\left(x_{n_{k}}, x_{n_{m}}\right) \rightarrow 0$ as $k, m \rightarrow \infty$. We consider the sequence $A x_{n_{k}}=x_{n_{k}+1}$. From the problem statement, $d\left(A x_{n_{k}}, A x_{n_{m}}\right)<d\left(x_{n_{k}}, x_{n_{m}}\right) \rightarrow 0$. Hence, the sequence $A x_{n_{k}+1}$ is also a Cauchy sequence, let its limit be z_{1}. Similarly, we obtain $\exists \lim x_{n_{k}+2}=z_{2}, \exists \lim x_{n_{k}+3}=z_{3}$, and so on. The number of limit points $z_{0}, z_{1}, z_{2}, \ldots$ cannot exceed $n_{k+1}-n_{k}$ since the sequence $x_{n_{k+1}}$ is just $x_{n_{k}}$ and, hence, $x_{n_{k+1}} \rightarrow z_{0}$. So, we have limit points $z_{0}, z_{1}, \ldots, z_{p}$. The condition $d(A x, A y)<d(x, y)$ implies that A is a continuous mapping. Since $x_{n_{k}} \rightarrow z_{0}$ then $A x_{n_{k}} \rightarrow A z_{0}$. Consequently, $z_{1}=A z_{0}$. Similarly, $z_{2}=A z_{1}, z_{3}=A z_{2}, z_{0}=A z_{p}$. However, the condition $d(A x, A y)<d(x, y)$ implies that there may not be a periodic orbit. Really,

$$
d\left(z_{1}, z_{0}\right)=d\left(A z_{0}, A z_{p}\right)<d\left(z_{0}, z_{p}\right)=d\left(A z_{p}, A z_{p-1}\right)<\cdots<d\left(z_{2}, z_{1}\right)=d\left(A z_{1}, A z_{0}\right)<d\left(z_{1}, z_{0}\right)
$$

The contradiction $d\left(z_{1}, z_{0}\right)<d\left(z_{1}, z_{0}\right)$ proves the absence of any periodic orbit. So, $z_{0}=z_{1}=\ldots=z_{p}$ is the only fixed point: $z_{0}=A z_{0}$.
17. Prove that a uniformly bounded set of functions in $C[a, b]$, which satisfy the Lipshitz condition with the same common constant, is compact in $C[a, b]$. $x(t)$ satisfies the Lipshitz condition with constant L if $\forall t, s:|x(t)-x(s)| \leq C|t-s|$.
18. Determine whether the following sets in $C[0,1]$ are relatively compact (pre-compact): (a) $x_{n}(t)=\sin (n t)$

Not relatively compact: $[\sin (n t)]^{\prime}=n \cos (n t)=n \rightarrow \infty$ at $t=0$.
(b) $x_{n}(t)=\sin (t+n)$

This set is pre-compact: $\left|x_{n}^{\prime}(t)\right|=|\cos (t+n)| \leq 1$. Uniform boundedness of slopes implies equicontinuity.
(c) $x_{\alpha}(t)=\arctan (\alpha t), \alpha \in \mathbf{R}$

Not pre-compact. Do like in (a)
(d) $x_{\alpha}(t)=e^{t-\alpha}, \alpha \in \mathbf{R}, \alpha \geq 0$.

Pre-compact. $\left|x_{\alpha}^{\prime}(t)\right|=e^{t-\alpha} \leq e$ since $0 \leq t \leq 1$.
Bonus 2: Prove that the condition $d(f(x), f(y))<d(x, y), x \neq y$, is insufficient for the existence of a fixed point of function f.
Solution. Consider in usual metric $f:[0, \infty) \mapsto[0, \infty), f(x)=x+\frac{1}{x+1}$. The graph $y=f(x)$ is above the bisector $y=x$ and approaches it as $x \rightarrow \infty$. Its slope is positive but less than 1 at all points. Hence, $d(f(x), f(y))<d(x, y)$.

Bonus 3; [1] p. 111 \# 24.

References

[1] Carothers N.L., Real Analysis. Cambridge University Press, 2000. ISBN 0521497493 or ISBN 0521497566.
[2] Kolmogorov, A.N., and Fomin, S.V., Introductory Real Analysis. Dover, 1970. ISBN 0486612260.
[3] Haaser, N.B., and Sullivan, J.A., Real Analysis. Dover, 1991. ISBN 0486665097.
[4] Rudin, W., Real and Complex Analysis, 3d ed. McGraw-Hills, 1987.
[5] Folland, G.B., Real Analysis. Wiley, 1984.
[6] Reed, M. and Simon, B., Methods of Modern Mathematical Physics. 1. Functional Analysis. Academic Press 1972.
[7] Oxtoby, J.C., Measure and Category. A survey of the Analogies between Topological and Measure Spaces. Springer-Verlag, 1971.

