Ma 635. Real Analysis I. Lecture Notes 1.

I. ELEMENTS of DISCRETE MATHEMATICS

1.1 A mapping $f: A \mapsto B$ is a function if $\forall x \in A \exists!y \in B$ such that $f(x)=y . A$ is the domain of f, B is its codomain. The values of $y \in B$ that have at least one pre-image (inverse image) $x \in A$ form the range of $f, R(f) \subset B$.
1.2 Function $f(x)$ is one-to-one if $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$.
1.3 Show that f is 1-1 if $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
1.4 Function $f(x)$ is onto if its range covers the entire codomain: $R(f)=B$. Function f is bijection if it is both 1-1 and onto.
1.5 An equivalence relation on set X is a relation, which is reflexive $(x \sim x)$, symmetric $(x \sim y \Leftrightarrow y \sim x)$, and transitive $(x \sim y, y \sim z \Rightarrow x \sim z)$.
1.6 Equivalence relation splits X into a collection of non-intersecting subsets (partition of X). These subsets are called equivalence classes. Each equivalence class $[x]$ can be characterized by its representative x. Equivalence classes form quotient space X / \sim.
$1.7 p \rightarrow q \Longleftrightarrow \sim q \rightarrow \sim p$ (implication is equivalent to its contrapositive).

II. ELEMENTS of SET THEORY

2.1 Symmetric difference of sets $A \Delta B=(A \backslash B) \cup(B \backslash A)$.
2.2 Sets A and B are equivalent $(A \sim B)$ if \exists a bijection $f: A \mapsto B$. If $A \sim B$ then A and B have the same cardinal number. All sets are partitioned into non-intersecting equivalence classes. To each of the equivalence class a cardinal number $\operatorname{card}(A)$ (or $|A|$) is assigned.
$2.3|A|>|B|$ if \exists bijection $f: A \mapsto B^{\prime}, B^{\prime} \subset B$ and $A \nsim B$.
$2.4|\mathbf{N}|=\aleph_{0},|(0,1)|=\mathbf{c}>\aleph_{0}$.
$2.5|\mathbf{Q}|=\aleph_{0}$.
Hint: consider the rational numbers as the points on the plane with integer coordinates and choose a trial that covers all the points.
$2.6 \mathbf{c}>\aleph_{0}$.
Hint: prove by contradiction using the diagonal process.
$2.7\left|\mathbf{R}^{n}\right|=\mathbf{c}$.
2.8 If $|A|=\aleph_{0}$ then $|\underbrace{A \times A \times \cdots}_{\aleph_{0} \text { times }}|=\mathbf{c}$. If $|A|=\mathbf{c}$ then also $|\underbrace{A \times A \times \cdots}_{\aleph_{0} \text { times }}|=\mathbf{c}$.
2.9 $P(A)$ - power set (the set of all subsets of A), $|P(A)|=2^{|A|}$.
$2.10 \quad 2^{|A|}>|A|$.
Hint: assume $2^{|A|}=|A|$ and consider the set X formed by the elements of A which do not belong to their "associated subsets".
$2.112^{\aleph_{0}}=\mathbf{c}$.
$2.12 \operatorname{card}($ set of all real functions over $A) \geq 2^{|A|}$.
Particularly, card(set of all real functions on \mathbf{R}) $\geq 2^{\mathbf{c}}$.
Hint: consider the set of all characteristic functions that take the values 0 and 1 only
$2.13 \operatorname{card}($ set of all real continuous functions on $\mathbf{R})=\mathbf{c}$.
Hint: continuous functions are defined by their values on rational numbers whose cardinal number is \aleph_{0}. Then use problem 2.8.

III. ELEMENTS of CALCULUS

3.1 $A=\sup _{x \in X} f(x)$ if
(a) A is an upper bound: $\forall x, f(x) \leq A$;
(b) this upper bound is exact: $\forall \varepsilon>0 \exists x: f(x)>A-\varepsilon$.
$3.2 B=\inf _{x \in X} f(x)$ if (1) $\forall x, f(x) \geq A$ and (2) $\forall \varepsilon>0 \exists x: f(x)<A+\varepsilon$.
3.3 $A=\lim _{n \rightarrow \infty} x_{n}$ if $\forall \varepsilon>0 \exists N=N(\varepsilon) \forall n>N:\left|x_{n}-A\right|<\varepsilon$ (any ε-neighborhood of A contains a "tail" of the sequence).
$3.4 A \neq \lim _{n \rightarrow \infty} x_{n}$ if $\exists \varepsilon>0 \forall N \exists n>N:\left|x_{n}-A\right| \geq \varepsilon$.
$3.5\left\{x_{n}\right\}$ is a Cauchy sequence if $\forall \varepsilon>0 \exists N \forall n, m>N:\left|x_{n}-x_{m}\right|<\varepsilon$. Any Cauchy sequence has a limit.
3.6 Any convergent sequence is a Cauchy sequence.

Hint: $\left|x_{n}-x_{m}\right| \leq\left|x_{n}-x\right|+\left|x_{m}-x\right| \rightarrow 0, n, m \rightarrow \infty$.
3.7 If a sequence is convergent then the limit is unique.

Hint: assume that there are two distinct limits.
3.8 $A=\lim _{x \rightarrow x_{0}} f(x)$ if $\forall \varepsilon>0 \exists \delta \forall x,\left|x-x_{0}\right|<\delta:|f(x)-A|<\varepsilon$ (pre-image of any ε-neighborhood of A contains a δ-neighborhood of x_{0}).
3.9 $A=\lim _{x \rightarrow x_{0}} f(x) \Leftrightarrow\left[x_{n} \rightarrow x_{0}\right] \longrightarrow\left[f\left(x_{n}\right) \rightarrow A\right]$.
$3.10 f(x)$ is continuous at $x=x_{0}$ if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
$3.11 f(x)$ is uniformly continuous over $[a, b]$ if $\forall \varepsilon>0 \exists \delta \forall x^{\prime}, x^{\prime \prime} \in[a, b]$:
$\left|x^{\prime}-x^{\prime \prime}\right|<\delta \rightarrow\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\varepsilon$.
3.12 Sequence of functions $f_{n}(x)$ is pointwise convergent to $f(x), \quad f_{n} \longrightarrow f$, if $\forall \varepsilon>0 \forall x \exists N \forall n>N\left|f_{n}(x)-f(x)\right|<\varepsilon$. Here N depends on x.
3.13 Sequence of functions $f_{n}(x)$ is uniformly convergent to $f(x), \quad f_{n} \longrightarrow f$, if $\forall \varepsilon>0 \exists N \forall n>N \forall x\left|f_{n}(x)-f(x)\right|<\varepsilon$. Here N is independent of x.
3.14 Sequence of functions $f_{n}(x)=x^{n}, x \in[0,1]$, is pointwise convergent to $f(x)=\left\{\begin{array}{cc}0, & 0 \leq x<1 \\ 1, x=1\end{array}\right.$ but is not uniformly convergent to $f(x)$.
$3.15 f_{n} \Longrightarrow f \Longleftrightarrow \sup _{x}\left|f_{n}(x)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty$.
3.16 Sequence of infinite-dimensional vectors (sequences) $x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots\right)$ is coordinatewise convergent to $x=\left(x_{1}, x_{2}, \ldots\right)$ as $n \rightarrow \infty$ if $\forall \varepsilon>0 \forall k \exists N=N(\varepsilon, k) \forall n>N:\left|x_{k}^{(n)}-x_{k}\right|<\varepsilon$.
3.17 Sequence of infinite-dimensional vectors $x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots\right)$ is uniformly convergent to $x=\left(x_{1}, x_{2}, \ldots\right)$ as $n \rightarrow \infty, x^{(n)} \longrightarrow x$, if $\forall \varepsilon>0 \exists N=N \forall n>N \forall k:\left|x_{k}^{(n)}-x_{k}\right|<\varepsilon$.
3.18 Sequence $x^{(n)}=(\underbrace{1,1, \ldots, 1}_{n}, 0,0, \ldots)$ is coordinatewise convergent to $x=(1,1,1, \ldots)$ but it does not converge to x uniformly.
$3.19 x^{(n)} \longrightarrow x \Longleftrightarrow \sup _{1 \leq k<\infty}\left|x_{k}^{(n)}-x_{k}\right| \rightarrow 0$ as $n \rightarrow \infty$.
Reading:
[1] sections $1,2,10$;
[2] sections 1.1-1.4, 2.1-2.6, 3.1-3.8;
[3] sections 1.1-1.6, 2.3-2.5, 4.1, 4.5.

References

[1] Carothers N.L., Real Analysis. Cambridge University Press, 2000. ISBN 0521497493 or ISBN 0521497566.
[2] Kolmogorov, A.N., and Fomin, S.V., Introductory Real Analysis. Dover, 1970. ISBN 0486612260.
[3] Haaser, N.B., and Sullivan, J.A., Real Analysis. Dover, 1991. ISBN 0486665097.
[4] Rudin, W., Real and Complex Analysis, 3d ed. McGraw-Hills, 1987.
[5] Folland, G.B., Real Analysis. Wiley, 1984.
[6] Reed, M. and Simon, B., Methods of Modern Mathematical Physics. 1. Functional Analysis. Academic Press 1972.
[7] Oxtoby, J.C., Measure and Category. A survey of the Analogies between Topological and Measure Spaces. Springer-Verlag, 1971.

