
Ma 635. Real Analysis I. Review I.

1. Prove that the function f(t) = t3 is a contractive operator in the ball Br(0), r < 1/
√

3,
but isn’t contractive near the fixed points t = 1 and t = −1.
Solution. |f(t) − f(s)| = |t2 + ts + s2| · |t − s|. So, |t2 + ts + s2| ≤ α < 1 if |t|, |s| < 1√

3
. Obviously,

f : Br(0) 7→ Br(0), r < 1√
3

(invariance). Consequently, in view of the contraction mapping theorem, ∃!t ∈ Br(0)

such that t = f(t). The uniqueness holds in Br(0) only.

Near the fixed points ±1 the expression |t2 + ts + s2| ≈ 3 > 1, and we have no contraction then.

2. Let us consider the set of n-dimensional vectors x =
〈
x1, x2, . . . xn

〉
. Find 0 < p < 1 such

that ‖x‖ = [
∑n

i=1 |xi|p]1/p is not a norm.

Solution: Let p = 1/2, n = 2, and xi, yi > 0. Then

‖x‖ = x1 + x2 + 2
√

x1x2, ‖y‖ = y1 + y2 + 2
√

y1y2,

‖x + y‖ =

(√
x1 + y1 +

√
x2 + y2

)2

= x1 + x2 + y1 + y2 + 2
√

(x1 + y1)(x2 + y2) > ‖x‖+ ‖y‖

because
√

(x1 + y1)(x2 + y2) >
√

x1x2 +
√

y1y2.
To prove the last inequality, we square it and obtain

x1y2 + x2y1

2
>
√

x1y2 · x2y1,

which is just the classical arithmetic-geometric inequality a+b
2
≥
√

ab.

Consequently, the triangle inequality fails.

3. Let c0 be the space of infinite vectors (sequences) x = (x1, x2, . . . , xn, . . .), converging to
zero: lim

n→∞
xn = 0 with a metric d(x, y) = sup

n
|xn − yn|.

Prove that
(a) ∀p ≥ 1, lp ⊂ c0

(b) ∀p ≥ 1, c0 6⊂ lp.

Solution (a) If x ∈ lp then
∑∞

i=1
|xi|p < ∞ and, consequently, xi → 0 as i →∞. Thus, x ∈ c0.

(b) Consider, say,

x =

(
1,

(
1

2

)1/p

,

(
1

3

)1/p

,

(
1

4

)1/p

, . . . ,

(
1

i

)1/p

, . . .

)
∈ c0.

However, x 6∈ lp since the series
∑∞

i=1
1
i

diverges.

4. Whether the sequence xn(t) =
t2n

2n
− t3n

3n
is converging in space

(a) C[0, 1]
(b) C1[0, 1], where ‖x‖C1 = ‖x‖C + ‖x′‖C

(c) C2[0, 1], where ‖x‖C1 = ‖x‖C + ‖x′‖C + ‖x′′‖C

(d) C[0, 1
2 ] ?

Solution Since the sequence converges pointwise (for every fixed t ∈ [0, 1] to zero, then we should verify the
convergence of the given sequence to zero in corresponding spaces.

(a) ‖xn − 0‖ = sup
0≤t≤1

| t2n

2n
− t3n

3n
| = 1

6n
→ 0. Hence, the sequence is converging in C[0, 1].

(b) ‖xn‖C1 = ‖xn‖C + ‖x′n‖C .‖x′n‖C = sup
0≤t≤1

|t2n−1 − t3n−1|. To evaluate the maximum, we differentiate

and equal the derivative to zero. Afterwards, we obtain ‖x′n‖ → frac427 6= 0. No convergence in c1[0, 1].

(c) Clearly, no convergence, see (b).

(d) In view of (a), it is convergent in C[0, 1
2
].
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5. Whether the set of all polynomials in C[a, b]
(a) is open? (b) is closed?
Solution. Neither open, nor closed. Let P ⊂ C[a, b] be the set of all polynomials defined on [a, b]. If P is open

then ∀x ∈ P∃Bε(x) ⊂ P . However, yε(t) = 1 + ε
2

sin t ∈ Bε(1) but yε 6 inP .

If P is closed, then any convergent sequence of polynomials must have a polynomial as a limit. However, the

sequence pn(t) =
n∑

i=0

tn

n!
converges to the sum of the infinite series, which is just et 6∈ P .

6. For which values p the set {x ∈ lp, x = (x1, x2, . . .) : |xn| ≤ 1/n} is closed?
For all p ≥ 1.

7. It is known that the set of continuous piecewise linear functions is dense in C[a, b]. Is
C[a, b] separable?
Yes, let us consider continuous piecewise linear functions with cusps at rational points. The number of such func-

tions is countable, and they approximate any continuous piecewise linear functions, which, in turn, approximate

any continuous functions.

8. (a) Is the function d(x, y) =
∣∣∣∣
1
x
− 1

y

∣∣∣∣ a metric on the set of all real numbers x ≥ 1?

(b) If ”yes”, is this metric space complete?
No.

(c) If it is not complete, describe its completion (what points should be ”added”?).
Add two ”infinite” points ±∞.

9. Prove that every finite-dimensional linear normed space is complete.
All norms in finite-dimensional spaces are equivalent:

∃c1, c2 such that ∀x c1‖x‖1 ≤ ‖x‖ ≤ c2‖x‖1.

So it is sufficient to consider the standard norm in Rm. Any Cauchy sequence in m-dimensional space has a

coordinate-wise limit, which is just the desired limit in Rm. Really, the sequence of the first coordinates is a

Cauchy sequence in the standard sense of number sequences and, hence, it has a limit. The same is true for any

coordinate. The limits of coordinates form the m-dimensional vector, which is just the coordinate-wise limit of

the original Cauchy sequence.

10. Consider space R∞ of all sequences x = (x1, x2, . . .).
(a) Show that

d(x, y) =
∞∑

i=1

2−i |xi − yi|
1 + |xi − yi|

is a metric.
Check the properties of metric, especially the triangle inequality.
(b) Prove that R∞ is complete.

d
(
x(n), x(m)

)
=

∑∞
i=1

2−i |x(n)
i
−x

(m)
i

|
1+|x(n)

i
−x

(m)
i

|
→ 0. Then for any coordinate i, |x(n)

i − x
(m)
i | → 0 and, hence,

∃ lim
n→∞

x
(n)
i = xi. Since R∞ is the space of all sequences, then x = (xn)∞n=1 ∈ R∞, and R∞ is complete.

(c) Is it possible to introduce in R∞ a norm associated with the above metric (i.e., d(x, y) =
‖x− y‖)?
No, it must be ‖x‖ = d(x, 0) =

∑∞
i=1

2−i |xi|
1+|xi| but ‖λx‖ 6= |λ| · ‖x‖.

11. Prove that any continuous mapping of interval [0, 1] into itself has at least one fixed
point.
Graph the function and observe that the graph intersects the bisector y = x.
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12. Consider operator A : C[0, 1] 7→ C[0, 1], Ax(t) = λ
t∫
0

x(s)ds + 1.

(a) Prove that A is contractive if |λ| < 1.
Just by definition.

(b) Find its fixed point for λ = 1/2.
x0(t) ≡ 0, x1(t) = Ax0 ≡ 1, x2(t) = Ax1(t) = 1 + λt, x3(t) = 1 + λt + 1

2!
λ2t2, . . ., xn =

∑n

i=0
λiti

i!
→ eλt.

(c) Does A possess a fixed point if |λ| ≥ 1?
Yes, see (b). The series is convergent for any λ and t.

13. In RN every closed bounded set is compact. Consider R∞ with metric d(x, y) =∑∞
i=1

1
2i

|xi−yi|
1+|xi−yi| . Whether every closed bounded set in R∞ is compact?

Yes, it is compact. The boundedness in R∞ implies that ∀i, the i-coordinates fall into a bounded interval [ai, bi].

Let us now show that the set is totally bounded. We construct a finite ε-net as follows: choose N such that∑∞
i=N+1

2−i = 2−N < ε
2

and then construct grid points for every interval [ai, bi] for 1 ≤ i ≤ N such that ∀i ≤ N

the distance between the neighboring grid points is less than ε/N . The number of such points for every coordinate

i depends on the length of the interval [ai, bi].

14. Whether the set A = {x ∈ l4 : |xn| ≤ 1
n1/4 } is compact in l4? Why?

No, since this set is unbounded in l4.

15. Whether every bounded closed subset of a metric space is compact? If no, find a coun-
terexample.
No. In l∞ the set of unit vectors xn = (0, 0, . . . , 0, 1, 0, . . .) is bounded, closed (why?) but not totally bounded.

16. Whether a uniformly bounded set of infinite vectors from l∞, which satisfy the following
condition

∀n,m : |xn − xm| ≤ C|n−m|
is compact in l∞?
No. See the example from the previous problem.

17. Determine whether the following sets in C[0, 1] are relatively compact (pre-compact):
(a) xn(t) = tan(nt)
Not pre-compact since xn 6∈ C[0, 1] for n ≥ 2.

(b) xn(t) = sin(nt)
Not, since the slopes at t = 0 are not uniformly bounded. Then the equicontinuity condition of the Arzela theorem

fails.

18. Let xn → x. Show that ‖xn‖ → ‖x‖.
Solution. We know ‖xn − x‖ → 0. Then the use of the triangle inequality yiels

‖xn‖ − ‖x‖ = ‖(xn − x) + x‖ − ‖x‖ ≤ ‖xn − x‖+ ‖x‖ − ‖x‖ = ‖xn − x‖ → 0.

Hence,
∀ε > 0 ∃N ∀n > N, ‖xn‖ − ‖x‖ < ε. (1)

From another point of view,

‖x‖ − ‖xn‖ = ‖(x− xn) + xn‖ − ‖xn‖ ≤ ‖x− xn‖+ ‖xn‖ − ‖xn‖ = ‖x− xn‖ → 0.

Hence,
∀ε > 0 ∃N ∀n > N, ‖x‖ − ‖xn‖ < ε. (2)

From (1) and (2) we obtain ∣∣‖xn‖ − ‖x‖
∣∣ < ε

that implies ‖xn‖ → ‖x‖.
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