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ABSTRACT

Cell tower triangulation is a popular technique for determin-
ing the location of a mobile device. However, cell tower
triangulation methods require the knowledge of the actual
locations of cell towers. Because the locations of cell tow-
ers are not publicly available, these methods often need to
use estimated tower locations obtained through wardriving.
This paper provides the first large scale study of the accu-
racy of two existing methods for cell tower localization us-
ing wardriving data. The results show that naively applying
these methods results in very large localization errors. We
analyze the causes for these errors and conclude that one can
localize a cell accurately only if it falls within the area cov-
ered by the wardriving trace. We further propose a bounding
technique to select the cells that fall within the area covered
by the wardriving trace and identify a cell combining op-
timization that can further reduce the localization error by
half.
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INTRODUCTION

Many mobile applications rely on cell tower triangulation to
determine their position [4]. Even when Global Position-
ing System (GPS) is available, cell tower triangulation of-
fers a significantly faster time to first fix and lower energy
consumption. Cell tower triangulation methods [9, 5], how-
ever, require the knowledge of the actual locations of cell
towers. This is also the case for many more general local-
ization techniques such as Particle filters [7], lateration [10]
and Bayesian networks [11].
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Although there are several public sources of cell tower lo-
cations, we found these sources to be both incomplete and
inaccurate [1, 2, 3]. For instance, in the area we studied,
these websites had data about less than 10% of cell tow-
ers from the service provider that we studied. Because the
locations of cell towers are not readily available, a com-
mon way to estimate cell tower positions is through wardriv-
ing [5]. In wardriving, a vehicle drives within the target
area, recording signals emanating from nearby cell towers
(or WiFi access points) and the locations these signals were
received at [8]. Using this dataset, one can estimate the lo-
cations of cell towers with algorithms such as weighted cen-
troid [5, 6] or strongest received signal strength (strongest
RSS) [12]. It has been shown for WiFi localization algo-
rithms that the accuracy of such estimated access point lo-
cations directly affects the accuracy of mobile device local-
ization algorithms [8]. However, we are not aware of any
prior work that studied cell tower localization algorithm per-
formance at a large scale.

Validating these algorithms requires the knowledge of the
actual locations of cell towers. Chen et al. [5] used the
weighted centroid method based on the GSM wardriving
data. They reported a cell localization accuracy by physi-
cally visiting 6 cell towers, which is not representative in a
metropolitan area. Varshavsky et al. [12] used the strongest
RSS method to localize cell towers for their study, but did
not validate the cell localization accuracy. The closest work
to ours is that of Kim et al. [8], in which they studied the ac-
curacy of estimated WiFi access point (AP) locations from
wardriving data and compared them with the actual AP lo-
cations. They showed that the estimated AP locations have
a median error of 40 meters and that this error has a signif-
icant effect on the accuracy of estimating locations of mo-
bile users. In contrast, we study the accuracy of cell tower
localization algorithms and show that the different cellular
radio characteristics such as frequency, antenna height and
propagation environment, make the problem of cell tower
localization different from WiFi AP localization.

To perform the study, we obtained access to the actual lo-
cations of cell towers in the greater Los Angeles area and a
wardriving trace that covers a total area of 1396.2 km

2 in the
downtown, residential and rural areas of Los Angeles cov-
ered by 54 cell towers, each with multiple cell sectors. Our
study of cell tower localization algorithms on this dataset
lead to the following contributions: (a) We characterize the
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Figure 1. The localization error CDF figures when localizing the ob-

served cells using all the RSS readings in three areas.

performance of the weighted centroid and the strongest RSS
algorithms in the greater Los Angeles area and show that if
used naively these algorithms have very large localization
errors of more than 40km. (b) We show that one can hope to
localize a cell tower accurately only if it falls within the area
covered by the wardriving trace. (c) We propose a bounding
technique to select the towers that fall within the area cov-
ered by the wardriving trace and study their performance.
(d) Finally, we identify a cell combining optimization that
can further reduce localization errors by half.

DATA DESCRIPTION

We obtained access to a wardriving trace that covers three
areas in the greater Los Angeles area. The Downtown trace
covers an area of 3.5km×4.2km in the downtown Los An-
geles. The Residential trace covers an area of 6.3km×17km
in the southern part of the Los Angeles County. The Rural
trace covers an area of 35.4km×36km in the Victor Valley
of San Bernardino County.

The wardriving trace was collected over a period of 2 months
in February and March of 2009. The GSM signal strength
measurements and their locations were recorded every 2 sec-
onds and the speed of the car averaged about 32kmph. In to-
tal, we have 2,613,465 received signal strength (RSS) read-
ings from 105,271 unique locations, resulting, on average,
in 24.8 RSS readings from different cells per location. Each
cell tower has 2, 3 or 6 cells attached to it, depending on
the characteristics of the area and the coverage requirements.
We know which cells belong to which cell tower and the ac-
tual location of each cell tower.

EVALUATION OF CELL LOCALIZATION ALGORITHMS

In this section, we describe two cell tower localization algo-
rithms that have been used in the recent literature [12, 5, 6]
and evaluate their performance on our wardriving trace.

Strongest RSS: Strongest RSS estimates a cell’s location as
the location of the measurement with the strongest observed
RSS from that cell. This approach works well when a cell
is located close to the road where wardriving measurements
were collected, but often fails otherwise.

Weighted Centroid: The Centroid algorithm estimates the
cell’s location as the geometric center of the positions of the
measurements where the cell was observed at. We used the
Weighted Centroid method, in which the coordinates of each
position are weighted by the signal strength observed at that
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Figure 2. The strongest RSS to distance relationship for inside and

outside cells in Residential area.

position. The accuracy of the Weighted Centroid algorithm
is sensitive to the density and homogeneity of measurements
around the cell.

Evaluation: We tested the performance of both the Strongest
RSS and Weighted Centroid algorithms on our wardriving
traces in the three areas. Figure 1 plots the cumulative dis-
tribution function (CDF) of the difference between the esti-
mated and the actual cell tower locations. Note that the error
showed on the X-axis is in kilometers.

The figure shows that both Strongest RSS and Weighted Cen-
troid perform very poorly. The median error in the Down-
town area is 2.75km for Strongest RSS and 2.83km for Weighted
Centroid. Interestingly, the Strongest RSS outperforms Weighted
Centroid significantly in the rural area, achieving 0.7km me-
dian error vs. 7km, respectively. We believe this is because
many of the cells in the rural area are located near roads and
Strongest RSS seems to work well in this case.

Our conclusion is that blindly applying these algorithms to
estimate cell tower positions results in very large errors. In
the next section, we investigate the causes for these large
errors.

BOUNDING TECHNIQUE

To investigate what causes the large errors shown in Fig-
ure 1, we looked at the relationship between the strongest
signal strength at which a cell could be heard and the lo-
calization error of the Strongest RSS algorithm for that cell.
The results for the residential area are plotted in Figure 2.
The figure shows that once the strongest observed RSS drops
below roughly -60dBm, the localization error of the Strongest
RSS algorithm increases significantly. Moreover, once the
RSS drops below roughly -60dBm, the correlation between
the strongest received signal strength and the distance to the
cell also becomes weak, meaning that it is hard to predict
the distance to the cell by relying just on the received signal
strength.

Our conclusion is that both the Strongest RSS and the Weighted
Centroid cannot estimate accurate locations for all the cells
they observe because the estimated locations produced by
both these algorithms are, by design, located within the wardriv-
ing area. Therefore, cells that are located outside the wardriv-
ing area cause large localization errors.

Figure 2 shows the cells that fall inside the Residential area
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Figure 3. The localization CDF of different algorithms by using all the RSS readings in three areas.

as crosses (denoted as inside cells) and cells that fall out-
side the area as triangles (denoted as outside cells). The key
observation is that the outside cells are the cause for large
localization errors for the Strongest RSS algorithm and most
of them have the strongest RSSs lower than -60dBm. Un-
fortunately, filtering cells using a simple threshold on the
strongest RSS does not work well. First, taking a closer
look at Figure 2 (b) reveals that some outside cells have the
strongest RSS values that are higher than -60dBm, but still
cause large errors for the Strongest RSS algorithm. Second,
applying the threshold of -60dBm cuts out some of the inside
cells as well.

The challenge is then to determine which cells are inside
cells by just looking at the wardriving trace without hav-
ing access to the actual locations of the cells. To address
this challenge, we propose the bounding technique, which
has three steps: RSS Thresholding, Boundary Filtering, and
Tower-based Regrouping.

RSS Thresholding: Based on our findings presented in Fig-
ure 2, we filter out all cells whose strongest RSS is lower
than a certain cutoff threshold. The purpose of applying
this filtering is to eliminate as many outside cells as pos-
sible, while still keeping most of the inside cells. We use the
threshold of -60dBm in this paper.

Boundary Filtering: The boundary filtering technique is
based on the observation that the outside cells will have their
strongest RSS values on the boundary or the perimeter of the
wardriving area. This is because the nearest point from the
outside cell to the wardriving area is the wardriving bound-
ary. We tested this hypothesis by plotting the locations of
the outside cells relative to the wardriving area and validated
that this is indeed true.

Unfortunately, applying both the RSS Thresholding and the
Boundary Filtering may still leave some of the outside cells
in and filter some of the inside cells out due to RSS fluctua-
tions. For instance, certain outside cells may have measure-
ments of strongest RSS readings reside within the wardriv-
ing area and pass both the RSS Thresholding and the Bound-
ary Filtering steps.

Tower-based Regrouping: The Tower-based Regrouping
technique takes advantage of the relationship between a cell
tower and its cells. We discovered two ways to identify cells
belonging to the same cell tower. First, we found that clus-
tering cells geographically based on their estimated positions

can identify which cells belong to the same cell tower when
the distance between cell towers is large. This technique
works well in Residential and Rural areas, but often fails in
the Downtown area due to the closer distance between cell
towers. Second, we discovered that the prefix of a cell ID
up to the last digit is the same for all cells belonging to the
same cell tower, at least in the dataset that we studied. We
used the latter technique in this paper.

The basic idea of Tower-based Regrouping is that although
there may be some outside cells passing both RSS Thresh-
olding and the Boundary Filtering steps, the other cells be-
longing to the same cell tower will most likely fail these two
tests. Thus, if most of the cells belonging to the same cell
tower are filtered out, the Tower-based Regrouping step fil-
ters out the outlier outside cell as well. Similarly, if most
inside cells passed the RSS Thresholding and the Boundary
Filtering steps, the outlier that was eliminated is added back.
We found this technique to be very successful at determining
inside cells.

Evaluation: We tested our bounding technique on the wardriv-
ing traces in the three areas and found that it eliminated all
outside cells and kept all inside cells when the RSS thresh-
old was between -67 and -58 dBm. In comparison, the ba-
sic RSS threshold technique using -60dBm, cuts out 20% of
inside cells and leaves in 12% of outside cells in the down-
town area. We also tested the performance of the Strongest
RSS and the Weighted Centroid algorithms on the inside
cells identified by the bounding technique. Figure 3 shows
the CDF of the localization error for the Strongest RSS and
Weighted Centroid algorithms in the Downtown, Residential
and Rural areas. The results show that the performance of
both algorithms has dramatically improved, with Strongest
RSS significantly outperforming Weighted Centroid. The
median error of the Strongest RSS algorithm in the Resi-
dential area is 139m vs. 1357m for the Weighted Centroid.
In the next section, we show how the cell to cell tower re-
lationship can help improve the localization accuracy even
further.

CELL COMBINING OPTIMIZATION

So far, we estimated the positions of cells belonging to the
same cell tower independently from each other, even though
they share the same physical location. In this Section, we
show that merging wardriving traces of cells that share a
common cell tower into a single trace and estimating the po-
sition of the cell tower itself can improve localization results
significantly.
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(a) Radio propagation before combining (b) Radio propagation after combining

Figure 4. Radio propagation of cells
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Figure 5. The median error before and after cell combining in Residen-

tial area when choosing top K RSS readings.

During merging of traces, if a measurement contained read-
ings from several cells belonging to the same cell tower we
chose the reading with the strongest RSS. The effect of merg-
ing traces of cells belonging to the same cell tower into a
single trace is illustrated in Figure 4. The figure shows that
merging traces removes the measurement bias due to the di-
rectionality of a cell and results in a homogeneous coverage
of the area around the cell tower. However, the improve-
ments in the localization accuracy for the Strongest RSS and
Weighted Centroid algorithms come from different sources.
Strongest RSS performs better because in a merged trace the
locations of all cells belonging to the same cell tower are es-
timated at the position where any one of the cells was heard
the strongest. Weighted Centroid, on the other hand, per-
forms better because the homogenous coverage of the area
around the cell tower allows it to calculate the cell loca-
tion by utilizing positions of measurements in all directions
around the cell tower.

Figure 5 shows the median error of Strongest RSS and Weighted
Centroid in the Residential area before and after applying the
cell combining optimization on top of the bounding tech-
nique while varying the number of strongest K RSS read-
ings used by the algorithms. We make three observations.
First, before the cell combining, Strongest RSS always per-
forms better than Weighted Centroid. This is caused by the
non-homogeneity of measurements around the cell, which
has a big adverse effect on Weighted Centroid. Second, the
localization results after the cell combining significantly out-
perform those before the cell combining. Weighted Centroid
benefits more from the integrated signal measurement map
and achieves a very low medium error around 55m when
K = 60. Third, there is a tradeoff between RSS quality and
RSS quantity. Figure 5 (b) shows that the localization error
of Weighted Centroid presents a decreasing trend first and
then increases as K increases. The lowest medium error of
55m is achieved when K = 60.

Algorithm Downtown Residential Rural

50th 90th 50th 90th 50th 90th

Strongest RSS (before) 267 877 139 291 414 1997

Strongest RSS (after) 163 399 91 194 229 711

Improvement 39% 55% 35% 33% 45% 64%

Weighted Centroid (before) 785 1263 1357 2521 5536 10730

Weighted Centroid (after) 152 427 55 161 167 698

Improvement 81% 66% 89% 92% 97% 93%

Table 1. The improvement on the median error and 90th percentile

error for three areas. Note that the unit is in meters.

Finally, we present the localization accuracy improvement
after applying the cell combining optimization in Table 1.
In all three areas, we observed over 30% accuracy improve-
ment in the median error and above 33% improvement in
the 90th percentile error, indicating that the cell combining
optimization can improve the cell localization accuracy sig-
nificantly.

CONCLUSION

Accurately estimating locations of cell towers is important
for many existing mobile phone localization algorithms. In
this work, we conducted the first large scale study of the
accuracy of the popular Strongest RSS and Weighted Cen-
troid algorithms based on a large wardriving trace that cov-
ers downtown, residential and rural areas around greater Los
Angeles. We showed that naively applying these algorithms
results in very large localization errors. We analyzed the
causes for these errors and concluded that one can hope to lo-
calize a cell accurately only if it falls within the area covered
by the wardriving trace. We further proposed a bounding
technique to select the cells that fall within the area covered
by the wardriving trace and studied its performance. Finally,
we identified a cell combining optimization that can further
reduce localization errors by half.
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