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An Error Minimizing Framework for
Localizing Jammers in Wireless Networks

Zhenhua Liu, Hongbo Liu, Wenyuan Xu, and Yingying Chen

Abstract—Jammers can severely disrupt the communications in wireless networks, and jammers’ position information allows
the defender to actively eliminate the jamming attacks. Thus, in this paper, we aim to design a framework that can localize one
or multiple jammers with a high accuracy. Most of existing jammer-localization schemes utilize indirect measurements (e.g.,
hearing ranges) affected by jamming attacks, which makes it difficult to localize jammers accurately. Instead, we exploit a direct
measurement–the strength of jamming signals (JSS). Estimating JSS is challenging as jamming signals may be embedded in
other signals. As such, we devise an estimation scheme based on ambient noise floor and validate it with real-world experiments.
To further reduce estimation errors, we define an evaluation feedback metric to quantify the estimation errors and formulate
jammer localization as a non-linear optimization problem, whose global optimal solution is close to jammers’ true positions. We
explore several heuristic search algorithms for approaching the global optimal solution, and our simulation results show that
our error-minimizing-based framework achieves better performance than the existing schemes. In addition, our error minimizing
framework can utilize indirect measurements to obtain a better location estimation compared with prior work.

Index Terms—Jamming, Radio interference, Localization.
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1 INTRODUCTION
The increasing pervasiveness of wireless technologies,
combined with the limited number of unlicensed
bands, will continue to make the radio environment
crowded, leading to unintentional radio interference
across devices with different communication tech-
nologies yet sharing the same spectrum, e.g., cord-
less phones, Wi-Fi network adapters, Bluetooth head-
sets, microwave ovens, and ZigBee-enabled appli-
ances. Meanwhile, the emerging of software defined
radios has enabled adversaries to build intentional
jammers to disrupt network communication with little
effort. Regardless whether it is unintentional inter-
ference or malicious jamming, one or multiple jam-
mers/interferers may co-exist and have a detrimental
impact on network performance – both can be referred
as jamming. To ensure the successful deployment of
pervasive wireless networks, it is crucial to localize
jammers, since the locations of jammers allow a better
physical arrangement of wireless devices that cause
unintentional radio interference, or enable a wide
range of defense strategies for combatting malicious
jamming attackers.
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In this work, we focus on localizing one or mul-
tiple stationary jammers. Our goal is to extensively
improve the accuracy of jammer localization. Current
jammer-localization approaches mostly rely on pa-
rameters derived from the affected network topology,
such as packet delivery ratios [1], neighbor lists [2],
and nodes’ hearing ranges [3]. The use of these in-
direct measurements derived from jamming effects
makes it difficult to accurately localize jammers’ posi-
tions. Furthermore, they mainly localize one jammer
and cannot cope with the cases that multiple jammers
are located close to each other and their jamming
effects overlap.

To address the limitation caused by indirect mea-
surements of the jamming effect, we propose to use
the direct measurement of the strength of jamming
signal (JSS). Localizing jammers using JSS is appealing
yet challenging. First, jamming signals are embedded
in the regular network traffic. The commonly used re-
ceived signal strength (RSS) measurement associated
with a packet does not correspond to JSS. To overcome
this challenge, we devise a scheme that can effectively
estimate the JSS utilizing the measurement of the
ambient noise floor, which is readily available from
many commodity devices (e.g., MicaZ motes). Our
experiments using MicaZ motes with multiple sender-
receiver pairs confirm the feasibility of estimating JSS
under various network traffic conditions.

With the ability to estimate JSS, it appears that
one may leverage existing RSS-based localization al-
gorithms designed for regular wireless devices to
localize jammers. However, we consider jamming lo-
calization different for the following reasons. (1) Most
jammers start to disturb network communication af-
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ter network deployment, which makes it infeasible
to obtain a site survey of radio fingerprints around
jammers beforehand, a commonly used method for
localization in an indoor environment. (2) No de-
tailed prior knowledge about the jammers’ transmis-
sion power is available. (3) Multiple jammers with
overlapped jamming areas may collude and disturb
network communication together, while attempting to
hide their true locations.

To overcome these challenges and increase the local-
ization accuracy, we formulate the jammer localization
problem as a non-linear optimization problem and de-
fine an evaluation metric as its objective function. The
value of evaluation metric reflects how close the es-
timated jammers’ locations are to their true locations,
and thus we can search for the best estimations that
minimize the evaluation metric. Because traditional
gradient search methods may converge to a local
minimum and may not necessarily yield the global
minimum, we adopt several algorithms that involve
stochastic processes to approach the global optimum.
In particular, we examined three algorithms: a genetic
algorithm, a generalized pattern search algorithm, and a
simulated annealing algorithm. Our extensive simulation
results show that our localization error minimizing
framework not only can improve the estimation ac-
curacy of localizing one jammer compared to prior
work [3], but also can estimate the positions of mul-
tiple jammers simultaneously, making it especially
useful for identifying unintentional radio interference
caused by multiple wireless devices or a few mali-
cious and collaborative jammers. We summarize our
main contributions as follows:

• Estimating JSS is challenging because the jam-
ming signals are embedded in the regular signals.
To the best of our knowledge, our work is the first
that directly utilizes the JSS to localize jammers.
Our results using direct measurements (e.g., JSS)
exhibit significant improvement compared with
those using indirect measurements (e.g., hearing
ranges).

• We exploited path-loss and shadowing phenom-
ena in radio propagation and defined an eval-
uation metric that can quantify the accuracy of
the estimated locations. Leveraging such an eval-
uation metric, we formulated the jammer local-
ization problem as an error minimizing frame-
work and studied several heuristic searching al-
gorithms for finding the best solution.

• Our error-minimizing-based algorithms can lo-
calize multiple jammers simultaneously, even if
their jamming areas overlap. Localizing in such a
scenario is known to be challenging [4], [5].

We organize the remainder of the paper as follows.
We introduce our threat model in Section 2. In Sec-
tion 3, we overview our error-minimizing framework
for localizing jammers and formulate the jammer lo-
calization problem as a non-linear optimization prob-

Fig. 1. Illustration of the network nodes classification
due to jamming: [Left] prior to jamming and [right] after
jamming.

lem utilizing JSS. Then, we address the challenge
of estimating the JSS and present our real-systems
experiment validation in Section 4 and Section 2 of
the supplementary file. In Section 5, we analyze sev-
eral searching algorithms for solving the optimization
problem. Next, we present the performance study of
our error-minimizing-based localization approaches
in Section 6 and in Section 3 of the supplementary file.
Finally, we conclude in Section 7. The related work is
discussed in Section 1 of the supplementary file.

2 THREAT MODEL
There are many different attack strategies that jam-
mers can perform in order to disrupt wireless com-
munications. It is impractical to cover all the pos-
sible jamming attack models that might exist. Thus,
we mainly focus on one common type of jammer –
constant jammers. Constant jammers continually emit
radio signals, regardless of whether the channel is
idle or not. Such jammers can be unintentional radio
interferers that are always active or malicious jammers
that keep disturbing network communication.

Besides, we assume each jammer is equipped with
an omnidirectional antenna. Thus, every jammer has a
similar jamming range in all directions. Identification
of jammers’ positions will be performed after the jam-
ming attack is detected, and we assume the network
is able to identify jamming attacks and obtain the
number of jammers, leveraging the existing jamming
detection approaches [6], [7].

We classify the network nodes based on the level
of disturbance caused by jammers, and identify the
nodes that can participate in jammer localization,
e.g., the ones that can measure and report the JSS.
Essentially, the communication range changes caused
by jamming are reflected by the changes of neighbors
at the network topology level. Thus, the network
nodes could be classified based on the changes of
neighbors caused by jamming. We define that node
B is a neighbor of node A if A can communicate
with B prior to jamming. The network nodes can be
classified into three categories according to the impact
of jamming: unaffected node, jammed node, and boundary
node:
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Algorithm 1 Jammer Localization Framework.
1: p = MeasureJSS()
2: z = Initial positions
3: while Terminating Condition True do
4: ez =EvaluateMetric(z,p)
5: if NotSatisfy(ez) then
6: z = SearchForBetter()
7: end if
8: end while

• Unaffected node. A node is unaffected if it can
communicate with all of its neighbors. This type
of node is barely affected by jamming and may
not yield accurate JSS measurements.

• Jammed node. A node is jammed if it cannot
communicate with any of the unaffected nodes.
We note that this type of node can measure JSS,
but cannot always report their measurements.

• Boundary node. A boundary node can communi-
cate with part of its neighbors but not from all of
its neighbors. Boundary nodes can not only mea-
sure the JSS, but also report their measurements
to a designated node for jamming localization.

Figure 1 illustrates an example of network topology
changes caused by a jammer. Prior to jamming, all
the nodes could communicate with their neighbors,
shown as grey dots. Once the jammer became active
(shown as a star), affected nodes lost their neighbors
partially or completely. In the example depicted in
Figure 1, the nodes marked as red squares lost all of
their neighbors and became jammed nodes. The nodes
depicted in blue circles are boundary nodes, since
they lost part of their neighbors but still maintained
communication capability to a few neighbors. Finally,
the rest of the nodes that remained in grey dots
are unaffected nodes, and they can still communicate
with all their neighbors. Note that jammed nodes
are usually those nodes located closest to the jam-
mer, whereas the boundary nodes reside in between
jammed nodes and unaffected nodes.

In this work, the boundary nodes play an important
role, and our jammer localization algorithms rely on
them for sampling and collecting JSS for jammer
localization.

3 LOCALIZATION FORMULATION
Essentially, our jammer localization approach works
as follows. Given a set of JSS, for every estimated
location, we are able to provide a quantitative eval-
uation feedback indicating the distance between the
estimated locations of jammers and their true lo-
cations. For example, a small value of evaluation
feedback indicates that estimated locations are close
to the true ones, and vice versa. Although unable to
adjust the estimation directly, it is possible, from a few
candidate locations, to select the ones that are closest

Fig. 2. The contour of RSS subject to path loss is a
circle centered at the transmitter, and the contour of
RSS attenuated by both path loss and shadowing is an
irregular loop fluctuating around the path-loss circle.

to the true locations with high probability, making
searching for the best estimate feasible. Leveraging
this idea, our jammer localization approach comprises
two steps: (a) JSS Collection. Each boundary node
locally obtains JSS. (b) Best-Estimation Searching. Based
on the collected JSS, a designated node will obtain a
rough estimation of the jammers’ positions. Then, it
refines the estimation by searching for positions that
minimize the evaluation feedback metric. The details
are described in Algorithm 1. The search-based jam-
mer localization approaches have a few challenging
subtasks:

1) EvaluateMetric() has to define an appropri-
ate metric to quantify the accuracy of estimated
jammers’ locations.

2) MeasureJSS() has to obtain JSS even if it may
be embedded in regular transmission.

3) SearchForBetter() has to efficiently search
for the best estimation.

In this section, we focus on formulating the eval-
uation feedback metric using collected JSS mea-
surements. In particular, we model the jammer
localization as an optimization problem. We de-
lay the discussion of JSS measurement scheme
MeasureJSS() to Section 4 and searching algorithms
SearchForBetter() to Section 5.

3.1 Radio Propagation Basics
In wireless communication, the received signal
strength attenuates with the increase of distance be-
tween the sender and receiver due to path loss and
shadowing, as well as constructive and destructive
addition of multipath signal components [8], [9]. Path
loss can be considered as the average attenuation while
shadowing is the random attenuation caused by ob-
stacles through absorption, reflections, scattering, and
diffraction [8], [9]. Figure 2 illustrates contours of a
received signal strength and the relationship between
shadowing and path loss. The attenuation caused
by shadowing at any single location, d meters from
the transmitter, may exhibit variation; the average
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Fig. 3. Illustration of jammer localization basis. When
the estimated jammer location is ed meters from the
true location, the estimated random attenuation is
biased and the corresponding standard deviation is
larger than the real one.

attenuation and average signal strength on the circle
centered at the transmitter are roughly the same [8],
[9]. This observation serves as the fundamental basis
of our error minimizing framework.

To illustrate our jammer localization approach, we
use the widely-used log-normal shadowing model [8],
[9], which captures the essential of both path loss
and shadowing. Let Pf be the received signal strength
subject to path loss attenuation only, and let the power
of a transmitted signal be Pt. The received signal
power in dBm at a distance of d can be modeled as
the sum of Pf and a variance (denoted by Xσ) caused
by shadowing and other random attenuation,

Pr = Pf +Xσ (1)
Pf = Pt +K − 10η log10(d), (2)

where Xσ is a Gaussian zero-mean random variable
with standard deviation σ, K is a unitless constant
which depends on the antenna characteristics and the
average channel attenuation, and η is the Path Loss
Exponent (PLE). In a free space, η is 2 and Xσ is
always 0.

3.2 Localization Evaluation Metric
In this section, we discuss the definition of the eval-
uation metric ez , and we show the property of ez as
well as its calculation. For the ease of reading, we
summarize the frequently used notations in Table 1.

3.2.1 The property of ez
The definition of ez should have the following prop-
erty: The larger the estimation errors of jammers’
locations are, the larger ez is. We define ez as the
estimated standard deviation of Xσ derived from the
estimated jammers’ locations. Considering the one-
jammer case, when the estimated jammer’s location
equals the true value, ez is the real standard deviation
of Xσ , which is relatively small. When there is an
estimation error (the estimated location is ed distance
away from the true location), ez will be biased and
will be larger than the real standard deviation of Xσ .
The level of bias is affected by ed: the larger ed is, the

bigger the estimated standard deviation of Xσ will
likely be. The detailed relationship between ez and ed
will be discussed in Section 5.1.

Here, we illustrate the property of ez using the
example depicted in Figure 3, where 3 boundary
nodes are {d1, d2, d3} distance away from the jammer
J . Let {Xσ1

, Xσ2
, Xσ3

} be the true shadowing atten-
uation between the boundary nodes and J , then ez
is the true standard deviation of {Xσ1

, Xσ2
, Xσ3

}. If
the estimated location of J is (x′

J , y
′

J), the estimated
distances between the three boundary nodes to J

are {d′1, d′2, d′3}. In this example, d′1 > d1, d′2 > d2,
and d′3 < d3. When d′1 > d1, the estimated JSS
contributed by pass loss only (P ′

f ) is smaller than
the real one. Given the measured JSS, the estimated
shadowing attenuation (X ′

σ1
) has to be larger than the

real one (Xσ1
) to make up for the under-estimated

P ′

f . Similarly, X ′

σ2
> Xσ2

and X ′

σ3
< Xσ3

. Thus,
the estimated shadowing attenuation {X ′

σ1
, X ′

σ2
, X ′

σ3
}

exhibits a larger variance than the real one, and the
estimated standard deviation (e′z) corresponding to
(x′

J , y
′

J) is larger than the true standard deviation.
We note that the relationship between ez and ed

is independent to the distribution of Xσ. Thus, in
cases where the log-normal shadowing model does
not match with the real radio propagation, ez can still
provide quantitative feedback of ed.

3.2.2 Calculation

Single Jammer. Assume a jammer J located at
(xJ , yJ) starts to transmit at the power level of PJ , and
m nodes located at {(xi, yi)}i∈[1,m] become boundary
nodes. To calculate ez , each boundary node will first
measure JSS locally (the details will be discussed
in Section 4), and we denote the JSS measured at
boundary node i as Pri . Let the current estimation of
the jammer J’s location and the transmission power
be

ẑ = [x̂J , ŷJ , P̂J + K̂].

Description of variables
Pri

JSS at a boundary node i

Pfi
Power component attenuated by path loss only

PJj
Transmission power of a jammer j

K Unitless constant which depends on the antenna
characteristics and the average channel attenuation

Xσi
Random attenuation at a boundary node i

z Unknown variable vector of jammers
p Vector of JSS at m boundary nodes
s Vector of n ANF measurements at a boundary node
(xJj

, yJj
) Coordinates of a jammer j

(xi, yi) Coordinates of of a boundary node i
dji Distance between a jammer j and a boundary node i

σ Standard deviation of random attenuation
ez Evaluation feedback metric
ed Localization error (distance between the estimated

location and the true location)

TABLE 1
Frequently used notations.
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Algorithm 2 Evaluation feedback metric calculation.
1: procedure EVALUATEMETRIC(ẑ,p)
2: for all i ∈ [1,m] do
3: X̂σi

= Pri − Pfi(ẑ)
4: end for
5: ez =

√
1
m

∑m
i=1(X̂σi

− ˆ̄Xσ)2

6: end procedure

Given ẑ, we can estimate Pfi , the JSS subject to path
loss only at boundary node i as

Pfi
(d̂i) = P̂J + K̂ − 10η log10(d̂i)

d̂i(ẑ) =
√

(x̂J − xi)2 + (ŷJ − yi)2
(3)

The random attenuation (shadowing) between the
jammer J and boundary node i can be estimated as

X̂σi
= Pri

− Pfi
(d̂i). (4)

The evaluation feedback metric for the estimation ẑ is
the standard deviation of estimated {X̂σi

}i∈[1,m],

ez(ẑ,p) =

√√√√ 1

m

m∑
i=1

(X̂σi
−

ˆ̄Xσ)2, (5)

where ˆ̄Xσ is the mean of X̂σi
. One of the biggest

advantages of this definition is that by subtracting X̄σ ,
ez is only affected by (x̂J , ŷJ) and is independent of
the estimated jamming power P̂J + K̂ .

Multiple Jammers. Similar to single jammer, we
assume n jammers located at {(xJi

, yJi
)}i∈[1,n] start

to transmit at the power level of {PJi
}i∈[1,n] sep-

arately at the same time, and m nodes located at
{(xi, yi)}i∈[1,m] become boundary nodes. To calculate
ez , each boundary node measures JSS locally and
we denote the JSS measured at boundary node i as
Pri which is a combined JSS from multiple jammers.
We can include all the variables to be estimated, i.e.,
current estimation of the n jammers’ locations and the
transmission powers, in a form of matrix written as

z =

⎛
⎜⎝

x̂J1
ŷJ1

P̂J1
+ K̂1

x̂J2
ŷJ2

P̂J2
+ K̂2

...
...

...
x̂Jn ŷJn P̂Jn + K̂n

⎞
⎟⎠ (6)

In the case of multiple jammers, pfi is the combined
JSS from n jammers subject to path loss at a boundary
node and can be calculated as

Pfi
(ẑ) = 10 log10(

n∑
j=1

10

P̂Jj
+K̂j

10

d̂
η
ji

)

d̂ji =
√

(x̂Jj
− xi)2 + (ŷJj

− yi)2

(7)

where d̂ji is the estimated distance between jammer
j and boundary node i. Note that P̂Jj

, K̂ and Pfi are
all in dBm.

Algorithm 3 Acquiring the Ambient Noise Floor
(ANF). ANF approximates the strength of jamming
signals.
1: procedure MEASUREJSS
2: s = {s1, s2, ..., sn} = MeasureRSS()
3: if var(s) < varianceThresh then
4: sa = s

5: else
6: JssThresh = min(s) + α[max(s)− min(s)] � α ∈ [0, 1]
7: sa = {si|si < JssThresh, si ∈ s }
8: end if
9: return mean(sa)

10: end procedure

Then, the random attenuation between multiple
jammers and the boundary node i can be estimated
as

Xσi
= Pri

− Pfi
(ẑ), (8)

Thus, the evaluation feedback metric of ẑ is

eẑ(z,p) =

√√√√ 1

m

m∑
i=1

(X̂σi
−

ˆ̄Xσ)2. (9)

where ˆ̄Xσ is the mean of X̂σi
.

3.3 Problem Formulation
Given the definition of the feedback metric (ez), we
generalize jammer localization problem as one opti-
mization problem,

Problem 1:

minimize
z

ez(z,p)

subject to p = {Pr1 , . . . , Prm};

where z are the unknown variable matrix of the jam-
mer(s), e.g., z is defined in Eq. (6), and {Pri}i∈[1,m] are
the JSS measured at the boundary nodes {1, . . . ,m}.
As we will show in Section 5.1, the estimated loca-
tion(s) of the jammer(s) at which ez is minimized,
matches the true location(s) of jammer(s) with small
estimation error(s).

4 MEASURING JAMMING SIGNALS
Received signal strength (RSS) is one of the most
widely used measurements in localization. For in-
stance, a WiFi device can estimate its most likely
location by matching the measured RSS vector of a
set of WiFi APs with pre-trained RF fingerprinting
maps [10] or with predicted RSS maps constructed
based on RF propagation models [11]. However, ob-
taining signal strength of jammers (JSS) is a challeng-
ing task mainly because jamming signals are embed-
ded in signals transmitted by regular wireless devices.
The situation is complicated because multiple wireless
devices are likely to send packets at the same time,
as jamming disturbs the regular operation of carrier
sensing multiple access (CSMA). For the rest of this
paper, we refer the regular nodes’ concurrent packet
transmissions that could not be decoded as a collision.
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Fig. 4. An Illustration of Network Deployment.

While it is difficult, if ever possible, to extract sig-
nal components contributed by jammers or collision
sources, we discover that it is feasible to derive the
JSS based on periodic ambient noise measurement. In
the following subsections, we first present basics of
ambient noise with regard to jamming signals, and
then introduce our scheme to estimate the JSS. Finally,
we validate our estimation schemes via real-world
experiments.

4.1 Basics of Ambient Noise Floor
In theory, ambient noise is the sum of all unwanted
signals that are always present, and the ambient noise
floor (ANF) is the measurement of the ambient noise.
In the presence of constant jammers, the ambient
noise includes thermal noise, atmospheric noise, and
jamming signals. Thus, it is

PN = PJ + PW , (10)

where PJ is the JSS, and PW is the white noise
comprising thermal noise, atmospheric noise, etc. Re-
alizing that at each boundary node PW is relatively
small compared to PJ , the ambient noise floor can
be roughly considered as JSS. Thus, estimating JSS is
equivalent to deriving the ambient noise floor (ANF)
at each boundary node. In this work, we consider
the type of wireless devices that are able to sample
ambient noise regardless of whether the communi-
cation channel is idle or busy, e.g., MicaZ sensor
platforms; and derive the ANF based on ambient
noise measurements.

A naive approach of estimating the ANF could be
sampling ambient noise when the wireless radio is
idle (i.e., neither receiving nor transmitting packets).
Such a method may not work in all network scenarios,
since it may result in an overestimated ANF. For
example, in a highly congested network, collision is
likely to occur, and the collided signals may be treated
as part of the ANF at the receiver, resulting in an
inflated ANF. This is exactly the situation we want
to avoid.

4.2 Estimating Strength of Jamming Signals
To derive the JSS, our scheme involves sampling am-
bient noise values regardless of whether the channel

is idle or busy. In particular, each node will sample n

measurements of ambient noise at a constant rate, and
denote them as s = [s1, s2, . . . , sn]. The measurement
set s can be divided into two subsets (s = sa ∪ sc).

1) sa = {si|si = PJ}, the ambient noise floor set
that contains the ambient noise measurements
when only jammers are active, and

2) sc = {si|si = PJ + PC}, the combined ambient
noise set that contains ambient noise measure-
ments when both jamming signals (PJ ) and sig-
nals from one or more senders (PC) are present.

Calculating JSS is equivalent to obtaining the average
of ANFs, i.e., mean(sa). In most cases, sc �= ∅ and
sa ⊂ s. In a special case where no sender has
ever transmitted packets throughout the process of
obtaining n measurements, sc = ∅ and sa = s. The
algorithm for calculating the ANF should be able
to cope with both cases. As such, we designed an
algorithm (referred as Algorithm 3) as follows: A
regular node will take n measurements of the ambient
noise measurements. It will consider the ANF as the
average of all measurements if no sender has trans-
mitted during the period of measuring; otherwise, the
ANF is the average of sa, which can be obtained by
filtering out sc from s. The intuition of differentiating
those two cases is that if only jamming signals are
present, then the variance of n measurements will
be small; otherwise, the ambient noise measurements
will vary as different senders happen to transmit.

The correctness of the algorithm is supported by
the fact that sa is not likely to be empty due to carrier
sensing, and the JSS approximately equals to the
average of sa. The key question is how to obtain sa.
To do so, we set the upper bound (i.e., JssThresh)
of sc in Algorithm 3 as α percentage of the amplitude
span of ambient noise measurements. We validate the
feasibility of obtaining sa using a filtering bound in
the next experimental subsection.

4.3 Experiment Validation
To verify our algorithm that derives JSS, we con-
ducted experiments involving one receiver and eight
senders, which were implemented on MicaZ nodes.
We deployed them on an outdoor playground as illus-
trated in Figure 4 and conducted a set of experiments
to evaluate the performance of Algorithm 3.

To study how well Algorithm 3 estimates JSS with a
various number of colliding sources and the network
traffic, we increased the number of senders sequen-
tially from 0 to 8, and summarized the estimated
ANFs in all four scenarios (in Figure 5): no jammer,
1 jammer, 2 jammers, and 3 jammers. In general, the
increase of the senders does not have much influence
on the correctiveness of ambient noise floor estimation
in all cases. Sender 1 transmitting at 20 packets per
second did show a higher variance of estimation. That
is caused by its low ambient noise sampling rate.
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Fig. 5. An illustration of the estimated ambient noise floor with an increasing number of senders.

The detailed evaluation results are presented in the
supplementary file.

5 FINDING THE BEST ESTIMATION
The jammer localization problem can be modeled as
a non-linear optimization problem (defined in Prob-
lem 1), and finding a good estimation of jammers’
locations is equivalent to seeking the solution that
minimizes the evaluation feedback metric ez . In this
section, we illustrate the relationship between ez and
ed (the distance between the true jammer’s location
and the estimated one), which shows that greedy al-
gorithms that search for successively better solutions
are unable to find the global optimal value. Instead,
we use several heuristic search algorithms that rely
on guided random processes to approach the global
optimum without converging to a local minimum.

5.1 Error Analysis
The evaluation feedback metric ez is a nonlinear
function of the estimated location of jammers and the
measured JSS values. To understand ez , we performed
a numerical simulation and derived the numerical
values of ez on a grid of points in a 300-by-300
meter square, within which 200 nodes were randomly
deployed with a transmission power of −45 dBm.
Additionally, the jammer transmitted at a power level
of −38 dBm, and affected about 20 boundary nodes.
To examine the impact of an inaccurate estimation
of PJ , we set the estimated jamming power P̂j to
−25 dBm, much larger than the true jamming power.
To get enough resolution, we set the grid step to
0.5m and in total calculated 360, 000 data points for
each network topology. We chose two representative
network topologies and depicted their error contours
in Figure 6, from which we drew the following obser-
vations:

1) Despite the inaccurate estimation of jamming
power, the global minimum of ez is close to
the true location of the jammer, suggesting that

the estimated location that minimizes ez is a
relatively accurate estimation of a jammer’s po-
sition, even if the estimated jamming power is
inaccurate.

2) At each boundary node (marked by blue circles
in Figure 6), ez reaches its local maximum. This
is because that at boundary node i, d̂i is close
to 0, which makes log(d̂i) approaches infinity
and causes X̂σi

to be an outlier. As a result, the
estimated standard deviation (ez) of X̂σ is large.

3) Interestingly, ez is not strictly proportional to ed.
Although when the estimated location is in the
close vicinity of the true value, the smaller ed
is, the smaller ez becomes. When the estimated
location increases to more than 100m, the larger
ed, the smaller ez . This is because when the
estimated jammers’ locations are further away
from the boundary nodes, their distances to
all the boundary nodes become larger than the
real ones. In turn, all the estimated random
attenuation {X̂σi

} at each boundary node are
consistently over-estimated and their standard
deviation becomes smaller than the ones when
part of {X̂σi

} are overestimated and part of
{X̂σi

} are underestimated.
The combination of the 2nd and 3rd observations

makes greedy algorithms impractical. For instance,
the gradient descent, which moves towards the steep-
est decreasing direction of ez , will not be able to climb
the ‘hill’ of the global maximum at a boundary node,
nor will it be guaranteed to search towards the global
minimum solution. Thus, we examine several heuris-
tic searching algorithms to find the global minimum.
In this work, these algorithms take the measured JSS
as inputs; however, they are not limited to it.

5.2 Algorithm Description.
5.2.1 A Genetic Algorithm
A genetic algorithms (GA) [12] searches for the global
optimum by mimicking the process of natural selec-
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Fig. 6. An illustration of error contours for ez in a network of 200 nodes. ez reaches its minimum at a location
close to the jammer’s true position.

tion in biological evolution. A GA iteratively gener-
ates a set of solutions known as a population. At
each iteration, a GA selects a subset of solutions to
form a new population based on their “fitness” and
also randomly generates a few new solutions. As a
result, the “fitter” solutions will be inherited. At the
same time, new solutions will be introduced to the
population, which may turn out to be “fitter” than
ever. As a result, over successive generations, a GA
is likely to escape from local optima and “evolves”
towards an optimal solution.

In the application of searching for the best esti-
mation of jammers’ locations, each individual (i.e., a
solution) has a chromosome of 3n genes, comprising
n jammers’ coordinates and jamming power levels.
We defined the fitness of each individual as ez. The
smaller ez is, the better.

5.2.2 A Generalized Pattern Search
A generalized pattern search algorithm (GPS) [13]
works similarly to the gradient descent algorithm.
However, at each iteration, instead of making a step
towards the steepest gradient, a GPS checks a set of
solutions (called a mesh) around the current solution,
looking for the one whose corresponding function
value is smaller than the one at the current solution. If
a GPS finds such a solution, the new solution becomes
the current solution at the next step of the algorithm.
By searching for a mesh of solutions, a GPS is likely to
find a sequence of solutions that approach an optimal
one without converging to a local minimum.

5.2.3 A Simulated Annealing Search
A simulated annealing algorithm (SA) [14] searches
for the optimal solutions by modeling the physical
process of heating a material and then controlled
lowering the temperature to decrease defects. At each
iteration, the simulated annealing algorithm compares
the current solution with a randomly-generated new
solution. The new solution is selected according to
a probability distribution with a scale proportional
to the temperature, and it will replace the current

solution according to a probability governed by both
the new object function value and temperature. By
accepting ‘worse’ solutions occasionally, the algorithm
avoids being trapped in local minima, and is able
to explore solutions globally. As the temperature de-
creases, the annealing algorithm reduces its search
scale so that it converges to a global minimum with
high probability.

5.3 Reducing Searching Space
Aforementioned algorithms are all search-based, and
their efficiency depends on the searching space. To im-
prove the search efficiency, we first limited the range
of each variable. For example, the coordinates of jam-
mers (xJ , yJ) should reside inside the jammed area,
which can be estimated by examining the positions of
both jammed nodes and boundary nodes1. We also re-
stricted a jammer’s transmission power to the range of
[−50, 0] dBm. Note that this restriction is less important
in terms of minimizing localization accuracy, since our
objective function ez does not depend on it. For the
initial estimated position of jammers, we set the initial
value to an estimation obtained by Adaptive LSQ
methods proposed by Liu et al. [3] for one-jammer
cases; and we randomly selected jammers’ locations
somewhere inside the jammed area for multi-jammer
cases.

6 PERFORMANCE VALIDATION
In this section, we evaluated the performance of our
jammer localization approaches that utilize the error
minimizing framework. Detailed evaluations are pre-
sented in the supplementary file.

We studied three heuristic search algorithms for
finding the best estimation of jammers’ position: a
genetic algorithm (GA), a generalized pattern search
(GPS) algorithm, and a simulated annealing (SA)

1. Even if in rare cases that the jammer is outside the network
deployed area, the layout of jammed nodes and boundary nodes
(e.g. at the boundary of the network) will indicate the jamming
regions.
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Fig. 7. The impact of various factors on median localization errors.

algorithm; and compared those three algorithms to
the prior work by Liu et al. [3], i.e. the Adaptive
LSQ algorithm. We developed a simulator in Mat-
lab. We simulated the underlying radio propagation
according to the log-normal shadowing model and
used GA, GPS and SA functions provided in the
Global Optimization toolbox in Matlab. To make a fair
comparison, we set the parameters of the shadowing
model to the same values as the ones used in the prior
work by Liu et al. [3] (e.g., the path loss exponent
η = 2.11).

We compared the algorithms in a variety of network
configurations, including node densities, jammer’s
transmission power, the standard deviation of random
attenuation, and the number of jammers. In addition,
we examined our error minimizing framework when
indirect measurements (i.e., hearing ranges [15]) are
used. A hearing range is the area within which a node
can successfully receive and decode packets, and it is
affected by the jammers’ locations and transmission
power.

Impact of Node Density. We first investigated the
impact of node density on the accuracy of localizing
one jammer by deploying {200, 300, 400, 500} nodes in
our 300-by-300 meter network and fixing the jammer
at the center (0, 0).

We depicted the median localization errors for our
heuristic searching algorithms and Adaptive LSQ al-
gorithm in Figure 7(a). Firstly, we observed that GA,
GPS and SA all achieved almost the same accuracy
and consistently outperformed Adaptive LSQ algo-
rithm in all the node densities and deployment setups.
Secondly, as the network node density increases, the
accuracy of all algorithms improves.

Impact of the Jamming Power. To study the effects
of various transmission power of jammers to the local-
ization performance, we examined networks with 400
nodes in a 300-by-300 meter field and set the jammer’s
transmission power to {−42,−40,−38,−36} dBm, re-
spectively. The results are plotted in Figure 7(b),
which shows that GA, GPS and SA outperformed the
Adaptive LSQ algorithm for all the jamming power
levels.

Impact of Propagation Irregularity. To examine
the impact of propagation irregularity on localiza-
tion errors, we used standard deviation of random

attenuation σ to quantify the propagation irregularity
and compared algorithm performance in 400-node
networks when the standard deviation σ was set to
1.0 and 2.0. From Figure 7(c), we observed that a
larger standard deviation σ (i.e., 2.0) increases the
median localization errors for all algorithms in both
deployments. However, our error-minimizing search-
ing algorithms can outperform the Adaptive LSQ
algorithms more in an environment with a higher
degree of irregularity.

Impact of the Number of Jammers. Then, we
examined the impact of the number of jammers on
the localization errors. We studied the cases when
{1, 2, 3, 4} jammers were emitting signals at −38 dBm,
and the network was comprised of 1600 nodes in a
600-by-600 meter square, whose density is equivalent
to 400 nodes in a 300-by-300 meter field. For multiple
jammer cases, we placed the jammers in such a way
that all of them had overlapped jamming regions,
since such an arrangement is difficult to localize. In
particular, we placed the jammers symmetrically to
the center of the network (0, 0) with pairs of jammers
60 meters away. The coordinates are as follows: (1) 2
jammers: (−30, 0) and (30, 0); (2) 3 jammers: (0, 35),
(−30,−17) and (30,−17); (3) 4 jammers: (−30, 30),
(−30,−30), (30,−30) and (30, 30).

Figure 7(d) summarizes the median localization
errors when one or multiple jammers were active. We
observed that as the number of jammers increases,
the performance of all algorithms decreases. Among
three searching algorithms, the estimation errors of
GPS didn’t increase as much as the other two, since
in each iteration, GPS involves searching for a better
solution using a fixed pattern (e.g. adding a fixed
dispersion metric to the current solution to generate
new ones), while the other two randomly generate
new solutions.

Impact of Using Indirect Measurements. Finally,
we studied the performance of our error-minimizing
framework using indirect measurements, e.g, hearing
ranges. Since a hearing range is affected by JSS, we are
able to calculate ez according to the measured hearing
ranges and find the estimated jammers’ locations
that minimize ez . We depicted the performance of
algorithms utilizing hearing ranges in various node
densities in Figure 8(a) and in two setups of standard
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Fig. 8. Performance of all algorithms that use indirect
measurements (e.g., hearing ranges).

deviation in Figure 8(b). All the results show that GA,
GPS and SA all constantly outperform the Adaptive
LSQ algorithm in all setups. Similar to the results
using JSS, the accuracy of all algorithms improves
as the node density increases and as the standard
deviation reduces. The results also show that using
indirect measurements can not achieve as good local-
ization accuracy as using direct measurements (e.g,
JSS), due to that indirect measurements usually cannot
capture jamming effects as precise as direct ones.
We note that by using indirect measurements (e.g.,
hearing ranges), we can extend our error-minimizing
framework to localize other types of jammers, such
as reactive jammers. In summary, besides using di-
rect measurements, our error minimizing framework
can leverage other types of indirect measurements to
obtain an improved estimation of jammers’ locations
than Adaptive LSQ.

7 CONCLUDING REMARKS
In this work, we addressed the problem of localizing
jammers in wireless networks, aiming to extensively
reduce estimation errors. The jammers could be
several wireless devices causing unintentional radio
interference or malicious colluding jamming devices
who co-exist and disturb the network together. Most
of the existing schemes for localizing jammers rely on
the indirect measurements of network parameters af-
fected by jammers, e.g., nodes’ hearing ranges, which
makes it difficult to accurately localize jammers. In
this work, we localized jammers by exploiting di-
rectly the jamming signal strength (JSS). Estimating
JSS is considered challenging since they are usually
embedded with other signals. Our estimation scheme
smartly derives ambient noise floors as the JSS uti-
lizing the available signal strength measuring capa-
bility in wireless devices. The scheme samples signal
strength regardless whether the channel is busy or
idle, and estimates the ambient noise floor by filtering
out regular transmission (if any) to obtain the JSS.
We implemented estimation scheme on MicaZ motes.
Our experiment involving three jammers show that
our estimation scheme can accurately derive the JSS
from the measurements of ambient noise floor under
various traffic scenarios.

To further improve the estimation accuracy, we
designed an error-minimizing-based framework to
localize jammers. In particular, we defined an eval-
uation feedback metric that quantifies the estimation
errors of jammers’ positions. We studied the rela-
tionship between the evaluation feedback metric and
estimation errors, and showed that the locations that
minimize the feedback metric approaches jammers’
true locations and greedy algorithms may not find
the global optimal solutions. Thus, we treated the
evaluation feedback metric as the objective function
for the error-minimizing purpose. We examined sev-
eral heuristic search algorithms (GA, GPS and SA)
under various network conditions: node densities,
jammer’s transmission power, the propagation irregu-
larity, and number of jammers. Besides, we examined
our error minimizing framework utilizing an indirect
measurement–a hearing range. Our extensive simu-
lation results show that our error-minimizing-based
search algorithms utilizing both the direct and indirect
measurements outperform the existing algorithms in
all experiment configurations. In particular, among
the three searching algorithms, we found that GPS can
find the best estimation of multiple jammers’ positions
in the shortest duration.
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