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Abstract—Real-time abnormal driving behaviors monitoring is a
corner stone to improving driving safety. Existing works on driving
behaviors monitoring using smartphones only provide a coarse-
grained result, i.e. distinguishing abnormal driving behaviors from
normal ones. To improve drivers’ awareness of their driving habits
so as to prevent potential car accidents, we need to consider a fine-
grained monitoring approach, which not only detects abnormal
driving behaviors but also identifies specific types of abnormal
driving behaviors, i.e. Weaving, Swerving, Sideslipping, Fast U-
turn, Turning with a wide radius and Sudden braking. Through
empirical studies of the 6-month driving traces collected from
real driving environments, we find that all of the six types of
driving behaviors have their unique patterns on acceleration and
orientation. Recognizing this observation, we further propose a fine-
grained abnormal Driving behavior Detection and iDentification
system, D3, to perform real-time high-accurate abnormal driving
behaviors monitoring using smartphone sensors. By extracting
unique features from readings of smartphones’ accelerometer and
orientation sensor, we first identify sixteen representative features
to capture the patterns of driving behaviors. Then, a machine
learning method, Support Vector Machine (SVM), is employed to
train the features and output a classifier model which conducts
fine-grained identification. From results of extensive experiments
with 20 volunteers driving for another 4 months in real driving
environments, we show that D3 achieves an average total accuracy
of 95.36%.

I. INTRODUCTION

According to the statistics from World Health Organization
(WHO), traffic accidents have become one of the top 10 leading
causes of death in the world[1]. Specifically, traffic accidents
claimed nearly 3500 lives each day in 2014. Studies show that
most traffic accidents are caused by human factors, e.g. drivers’
abnormal driving behaviors [2]. Therefore, it is necessary to
detect drivers’ abnormal driving behaviors to alert the drivers
or report Transportation Bureau to record them.

Although there has been works[3][4][5] on abnormal driving
behaviors detection, the focus is on detecting driver’s status
based on pre-deployed infrastructure, such as alcohol sensor,
infrared sensor and cameras, which incur high installation cost.
Since smartphones have received increasing popularities over the
recent years and blended into our daily lives, more and more
smartphone-based vehicular applications[6][7][8] are developed
in Intelligent Transportation System. Driving behavior analysis
is also a popular direction of smartphone-based vehicular ap-

(a) (b) (c) (d) (e) (f)
Fig. 1: Six types of abnormal driving behaviors: (a) Weaving,
(b) Swerving, (c) Sideslipping, (d) Fast U-turn, (e) Turning with
a wide radius, (f) Sudden braking.

plications. However, existing works[9][10] on driving behaviors
detection using smartphones can only provide a coarse-grained
result using thresholds, i.e. distinguishing abnormal driving be-
haviors from normal ones. Since thresholds may be affected
by car type and sensors’ sensitivity, they cannot accurately
distinguish the differences in various driving behavioral patterns.
Therefore, Those solutions cannot provide fine-grained identifi-
cation, i.e. identifying specific types of driving behaviors.

Moving along this direction, we need to consider a fine-
grained abnormal driving behaviors monitoring approach using
smartphone sensors without requiring any additional hardwares.
The fine-grained abnormal driving behaviors monitoring is able
to improve drivers’ awareness of their driving habits as most
of the drivers are over-confident and not aware of their reckless
driving habits. Additionally, some abnormal driving behaviors
are unapparent and easy to be ignored by drivers. If we can
identify drivers’ abnormal driving behaviors automatically, the
drivers can be aware of their bad driving habits, so that they
can correct them, helping to prevent potential car accidents.
Furthermore, if the results of the monitoring could be passed
back to a central server, they could be used by the police to detect
drunken-driving automatically or Vehicle Insurance Company to
analyze the policyholders’ driving habits.

According to [11], there are six types of abnormal driving
behaviors defined, and they are illustrated in Fig.1. Weaving
(Fig.1(a)) is driving alternately toward one side of the lane
and then the other, i.e. serpentine driving or driving in S-
shape; Swerving (Fig.1(b)) is making an abrupt redirection when
driving along a generally straight course; Sideslipping (Fig.1(c))
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is when driving in a generally straight line, but deviating from the
normal driving direction; Fast U-turn (Fig.1(d)) is a fast turning
in U-shape, i.e. turning round (180 degrees) quickly and then
driving along the opposite direction; Turning with a wide radius
(Fig.2(e)) is turning cross an intersection at such an extremely
high speed that the car would drive along a curve with a big
radius, and the vehicle sometimes appears to drift outside of the
lane, or into another line; Sudden braking (Fig.2(f)) is when the
driver slams on the brake and the vehicle’s speed falls down
sharply in a very short period of time.

This work uses smartphone sensing and machine learning
techniques. By extracting unique features from the readings of
smartphone sensors, we can detect and identify the six types
of abnormal driving behaviors above. To realize a fine-grained
abnormal driving behaviors monitoring, we face the following
great challenges. First, patterns of driving behaviors need to
be identified from readings of smartphone sensors. Second,
the noise of smartphone sensors’ readings should be removed.
Finally, the solution should be lightweight and computational
feasible on smartphones.

In this paper, we first set out to investigate effective features
from smartphone sensors’ readings that are able to depict each
type of abnormal driving behavior. Through empirical studies of
the 6-month driving traces collected from smartphone sensors
of 20 drivers in a real driving environment, we find that each
type of abnormal driving behaviors has its unique patterns on
readings from accelerometers and orientation sensors. Effective
features thus can be extracted to capture the patterns of abnormal
driving behaviors. Then, we train those features through a
machine learning method, Support Vector Machine (SVM), to
generate a classifier model which could clearly identify each of
driving behaviors. Based on the classifier model, we propose an
abnormal Driving behaviors Detection and iDentification system,
D3, which can realize a fine-grained abnormal driving behaviors
monitoring in real-time using smartphone sensors. Our prototype
implementation of D3 on Android-based mobile devices verifies
the feasibility of using D3 in real driving environments.

We highlight our main contributions as follows:

• We identify sixteen representative features to capture the
patterns of abnormal driving behaviors by empirically ana-
lyzing the 6-month driving traces collected from real driving
environments.

• We use a machine learning method, SVM, to train the
features of driving behaviors and obtain a classifier model
which can not only distinguish abnormal driving behav-
iors from normal ones but also identify specific types of
abnormal driving behavior. Machine learning rather than
threshold is used in our paper to play down the impact
caused by car type or sensor’s sensitivity.

• We propose a fine-grained abnormal driving behaviors mon-
itoring system, D3, to perform real-time high-accurate ab-
normal driving behaviors detection and identification using
smartphone sensors. The fine-grained system can inform
drivers of their abnormal driving behaviors which otherwise
may be ignored by them so as to improve their awareness

of driving habits.
• We conduct extensive experiments in real driving environ-

ments. The result shows that D3 can identify specific types
of abnormal driving behaviors in real time with an average
total accuracy of 95.36%.

The rest of the paper is organized as follows: The related
work is reviewed in Section II. In Section III, we analyze the
acceleration and orientation patterns of the six specific types of
abnormal driving behaviors. We present the design details of D3

in Section IV. We evaluate the performance of D3 and present
the results in Section V. Finally, we give the conclusion remarks
in Section VI.

II. RELATED WORK

In this section, we review the existing works on driving
behaviors detection, which can be categorized as follows.

Detection using pre-deployed infrastructure: [3] uses an
EGG equipment which samples the driver’s EGG signals to
detect drowsiness during car driving. [12] uses infrared sensors
monitoring the driver’s head movement to detect drowsy driving.
[13] captures the driver’s facial images using a camera to detect
whether the driver is drowsy driving by image processing. In
[4], GPS, cameras, alcohol sensor and accelerometer sensor are
used to detect driver’s status of drunk, fatigued, or reckless.
However, the solutions all rely on pre-deployed infrastructures
and additional hardwares that incur installation cost. Moreover,
those additional hardwares could suffer the difference of day and
night, bad weather condition and high maintenance cost.

Detection using smartphone sensors: To eliminate the need
of pre-deployed infrastructures and additional hardwares, recent
studies concentrate on using smartphones to detect abnormal
driving behaviors. In particular, [14] uses accelerometers, mag-
netometers and GPS sensors to determine whether high-risk
motorcycle maneuvers or accidents occur. [15] uses accelerom-
eters, gyroscopes and magnetometers to estimate a driver’s
driving style as Safe or Unsafe. [9][10] use accelerometers to
detect drunk driving and sudden driving maneuver, respectively.
The works are similar in that they perform a coarse-grained
driving behavior detection which uses some thresholds to find
out abnormal driving behaviors. Nevertheless, thresholds may
be affected by car type and sensors’ sensitivity so that they
cannot accurately distinguish the differences in various driving
behavioral patterns. Therefore, none of existing works can realize
fine-grained identification.

III. DRIVING BEHAVIOR CHARACTERIZATION

In this section, we first describe the data collection process
for driving behavior samples from real driving environments.
Then we analyze patterns of each type of driving behavior from
smartphone sensors’ readings.

A. Collecting Data from Smartphone Sensors

We develop an Andriod-based App to collect readings from
the 3-axis accelerometer and the 3-axis orientation sensor. We
align the two coordinate systems in the smartphone and in
the vehicle by making the accelerometer’s y-axis along the
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(a) Weaving
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(b) Swerving
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(c) Sideslipping
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(d) Fast U-turn
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(e) Turning with a wide radius
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(f) Sudden braking

Fig. 2: The acceleration and orientation patterns of the six types of abnormal driving behaviors from an accelerometer and an
orientation sensor’s readings.

moving direction of the vehicle. Therefore, we could monitor
the vehicle’s acceleration and orientation by retrieving readings
from the smartphone’s accelerometer and orientation sensor.

We collect traces from the accelerometers and orientation
sensors’ readings on 20 drivers with distinct vehicles from Jan.
11 to July 12, 2014. Each driver fixes a smartphone along
with a Car Digital Video Recorder (DVR) in his/her vehicle
within daily natural driving. The smartphone and Car DVR
record the sensors’ readings and all objective driving behaviors,
respectively. The 20 drivers keep collecting data in their daily
driving, including commute to work, shopping, touring and so
on. Those 20 drivers live in different communities and they have
different commute routes. On average, each driver may drive 60
to 80 kilometers per day. 20 smartphones of 5 different types are
used in our data collection, i.e. Huawei Honor3C, ZTE U809,
SAMSUNG Nexus3, SAMSUNG Nexus4 and HTC sprint, four
devices for each type. After that, we ask 9 experienced drivers
to watch the videos recorded by the Car DVR and recognize all
types of abnormal driving behaviors from the 6-month traces,
i.e. Weaving, Swerving, Sideslipping, Fast U-turn, Turning with a
wide radius or Sudden braking. In total, we obtain 4029 samples
of abnormal driving behaviors from the collected traces, which
is viewed as the ground truth.

B. Analyzing Patterns of Abnormal Driving Behaviors

After high frequency noises are removed in the collected data
using the low-pass filter, we can analyze the acceleration and
orientation patterns of each type of abnormal driving behaviors.
Let accx and accy be the acceleration on x-axis and y-axis,

respectively. Let orix and oriy be the orientation on x-axis and
y-axis, respectively.

1) Weaving: Fig.2(a) shows the acceleration and orientation
patterns of weaving from an accelerometer and orientation sen-
sor’s readings. We observe from this figure that there is a drastic
fluctuation on accx and this fluctuation continues for a period of
time, while accy keeps smooth. Thus, both the standard deviation
and the range of accx are very large and the time duration is
long. The mean value of accx is around zero. In addition, the
orientation values have similar patterns as acceleration values.

2) Swerving: Fig.2(b) shows the acceleration and orientation
patterns of swerving. Since swerving is an abrupt, instant be-
havior, the time duration is very short. When swerving occurs,
there is a great peak on both accx and orix. Thus, the range
and standard deviation of both accx and orix are large, and the
mean value is not near zero. In addition, both accy and oriy are
flat during swerving.

3) Sideslipping: Fig.2(c) shows the acceleration and orien-
tation patterns of sideslipping. When sideslipping occurs, accy
falls down sharply. Thus, the minimum value and mean value of
accy are negative, and the range of accy is large. In addition,
accx in sideslipping is not near zero. If the vehicle slips toward
the right side, accx would be around a positive value, while
if left, then negative. The mean value of accx thus is not near
zero. When it comes to orientation, there are no obvious changes.
Moreover, since sideslipping is an abrupt driving behavior, the
time duration is short.

4) Fast U-turn: Fig.2(d) shows the acceleration and orienta-
tion patterns of fast U-turn. When a driver turns right or left fast
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Fig. 3: System architecture.

in U-shape, accx rises quickly to a very high value or drops fast
to a very low value, respectively. Moreover, the value would last
for a period of time. The standard deviation of accx thus is large
on the beginning and ending of a fast U-turn, the mean value
of accx is far from zero and the range of accx is large. When
it comes to accy , there are no obvious changes. Moreover, orix
would pass over the zero point. Specifically, orix would change
either from positive to negative or from negative to positive,
depending on the original driving direction. Thus, the standard
deviation and value range of orix would be large. The mean
values in first half and second half of orix would be of opposite
sign, i.e. one positive and the other negative. It may take a period
of time to finish a fast U-turn, so its time duration is long.

5) Turning with a wide radius: The acceleration and ori-
entation patterns of turning with a wide radius are shown in
Fig.2(e). When turning at an extremely high speed, accx sees a
high magnitude for a period of time, while the accy is around
zero. Thus, the mean value of accx is far from zero and the
standard deviation of accx is large. When it comes to orientation,
orix sees a fluctuation, while oriy keeps smooth. The standard
deviation of orix thus is relatively large, and the mean value of
orix is not near zero since the driving direction is changed. It
may take a period of time to finish a turning with a wide radius,
so the time duration is long.

6) Sudden braking: Fig.2(f) shows the acceleration and ori-
entation patterns of sudden braking. When a vehicle brakes
suddenly, accx remains flat while accy sharply downs and keeps
negative for some time. Thus, the standard deviation and value
range of accx are small. On accy , the standard deviation is large
at the beginning and ending of a sudden braking and the range
of accy is large. Moreover, there are no obvious changes on
both orix and oriy . Since sudden braking is an abrupt driving
behavior, the time duration is short.

7) Normal Driving Behavior: Normal driving behavior means
smooth and safe driving with few and small fluctuations. Since
there are few drastic actions in a normal driving behavior, the
values on both accx and accy are not very large. So the mean,
standard deviation, maximum and minimum values in accelera-
tion on x-/y-axis are near zero. When it comes to orientation, a
normal driving behavior presents smooth most of time. So the
standard deviation and range of orientation are small.

Based on the analysis above, we find that each driving
behavior has its unique features, e.g. standard deviation, mean,

maximum, minimum, value range on accx, accy , orix and oriy ,
as well as the time duration. Therefore, we could use those
features to identify specific types of abnormal driving behaviors
using machine learning techniques.

IV. SYSTEM DESIGN

In this section, we present the design of our proposed system,
D3, which detects abnormal driving behaviors from normal ones
and identifies different abnormal types using smartphone sensors.
D3 does not depend on any pre-deployed infrastructures and
additional hardwares.

A. Overview

In our system, D3, abnormal driving behaviors could be
detected and identified by smartphones according to readings
from accelerometers and orientation sensors. Fig.3 shows the
architecture of D3. The whole system is separated into offline
part-Modeling Driving Behaviors and online part-Monitoring
Driving Behaviors.

In the offline part, Modeling Driving Behaviors, D3 trains
a classifier model using machine learning techniques based
on the collected data, which could identify specific types of
driving behaviors. In the Feature Extracting, effective features
are extracted from specific types of driving behavioral patterns
on acceleration and orientation. Afterwards, the features are
trained in the Training and a classifier model would be gen-
erated which can realize fine-grained identification. Finally, the
classifier model is output and stored to Model Database.

The online part, Monitoring Driving Behaviors, is installed
on smartphones which senses real-time vehicular dynamics to
detect and identify abnormal driving behaviors. D3 first senses
the vehicles’ acceleration and orientation by smartphone sensors.
After getting real-time readings from the accelerometer and the
orientation sensor, the Coordinate Reorientation is performed to
align the smartphone’s coordinate system with the vehicle’s using
the method in [6][7]. Then, in the Cutting Driving Behavioral
Patterns, the beginning and ending of a driving behavior are
found out from accelerometer and orientation sensor’s readings.
Afterwards, in Identifying, D3 extracts features from patterns
of the driving behaviors, then identifies whether one of the
abnormal driving behaviors occurs based on the classifier model
trained in Modeling Driving Behaviors. Finally, if any of the
abnormal driving behaviors were identified, a warning message
would be sent to receivers by the Alerting.

B. Extracting and Selecting Effective Features

In D3, we use machine learning techniques to identify fine-
grained abnormal driving behaviors. The process of feature
extraction and selection is discussed in the following.

1) Feature Extraction: When machine learning algorithms
are processed, representative tuple of features rather than raw
data is a more effective input. Thus, it is necessary to extract
effective features from driving behavioral patterns. According to
the analysis in Section III, each driving behavior has its unique
patterns on accx, accy , orix, oriy and time duration (t). The
main difference between various driving behaviors lies in the
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Fig. 4: Some effective features for identifying normal driving behavior from abnormal ones and weaving behavior from other five
abnormal driving behaviors.

maximum, minimum, value range, mean, and standard deviation
of accx, accy , orix and oriy and t. Therefore, those values can
be used as features for training. However, not all of them are
equally effective for abnormal driving behaviors’ detection and
identification.

2) Feature Selection: In order to select the really effective
features, we analyze the collected traces. Fig.4 shows some of the
effective features which distinguish abnormal driving behaviors
from normal ones and distinguish weaving from the other five
abnormal driving behaviors.

Fig.4(a) shows the difference between normal and abnor-
mal driving behaviors in a 2-dimensional features tuple (i.e.
rangeacc,x and rangeacc,y). It can be seen that the two features
can clearly discriminate normal and abnormal driving behaviors.
Therefore, we manage to distinguish abnormal driving behaviors
from normal ones with only two features.

In fact, additionally to the two features shown in Fig.4(a),
some other combinations of a 2-dimensional features tuple (i.e.
any 2 out of t, maxori,x, maxori,y, σori,x, σori,y, σacc,x,
rangeacc,x, minacc,y and rangeacc,y) also manage to distin-
guish abnormal driving behaviors from normal ones.

Although we can distinguish abnormal driving behaviors from
normal ones using a 2-dimensional features tuple, we fail to
differentiate the six types of abnormal behaviors from each
other only using 2-dimensional features. As the example shown
in Fig.4(a), the six types of abnormal driving behaviors are
mixed with each other. Nevertheless, they could be differentiated
pairwise with a 2-dimensional features tuple. In other words,

although the six abnormal driving behaviors cannot be differenti-
ated from each other at the same time, any two among them can
be differentiated intuitively by a 2-dimensional features tuple.
Taking weaving for example (see Fig.4(b) - Fig.4(f)), weaving
can be distinguished from the other five abnormal driving
behaviors using a 2-dimensional features tuple. For instance,
in Fig.4(b), weaving and swerving can be discriminated from
each other using σori,y and σacc,x. Similarly, other abnormal
driving behaviors can also be pairwise discriminated using 2-
dimensional features tuples.

Based on the collected traces, we investigate all possible
pairwise cases. In each case, we find out several effective
features conductive to distinguishing one driving behavior from
another. Finally, we identify sixteen effective features that are
able to capture the patterns of different types of abnormal driving
behaviors, as listed in TABLE I.

C. Training a Fine-grained Classifier Model to Identify Abnor-
mal Driving Behaviors

After feature extracting, we obtain a tuple of features for each
driving behavior. Then a classifier model is trained based on
the tuples for all driving behaviors through machine learning
techniques [17] to identify various driving behaviors. We use
the multi-class SVM [18][19] to train the classifier model. For
each driving behavior, the input into SVM is in the form of <16-
dimensional features, label>, where the 16-dimensional features
are the tuples obtained from the Feature Extracting and the label
is the type of the driving behavior.
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Fig. 5: The acceleration and orientation patterns of one minute
driving behaviors.

The cores in SVM are the kernel and the similarity function. A
kernel is a landmarks, and the similarity function computes the
similarity between an input example and the kernels. Specifically,
assume that our training set contains m samples, and each sample
is 16-dimensional (i.e. the 16-dimensional features), denoted by

x(i) = (x
(i)
1 , x

(i)
2 , · · · , x(i)16 ), i = 1, 2, · · · ,m (1)

where x(i) is the i-th sample, and x(i)j means the j-th feature of
x(i). When SVM starts, all input samples (x(1), x(2), · · · , x(m))
are selected as kernels, recorded as l(1), l(2), · · · , l(m). Note that
x(i) = l(i) for i = 1, 2, · · · ,m. Afterwards, for each sample,
SVM compute its similarity between the kernels by

f
(i)
j = e

−
||x(i) − l(j)||

2σ2

2

, i, j = 1, 2, · · · ,m (2)

where f (i)j is the similarity between input sample x(i) and the

kernel l(j), σ is a parameter defined manually, and ||x(i) − l(j)||2

is the distance between x(i) and l(j) calculated by

||x(i) − l(j)||
2
=

16∑
k=1

(x
(i)
k − l

(j)
k )2,

i, j = 1, 2, · · · ,m
(3)

In SVM, those m 16-dimensional input samples (i.e.
x(1), x(2), · · · , x(m)) would be converted into m m-dimentional
similarity features (i.e. f (1), f (2), · · · , f (m)), since for each x(i),
the similarity between x(i) and any l(j) in l(1), l(2), · · · , l(m)

are calculated by Equation 2. With the new features f =
(f (1), f (2), · · · , f (m)), a cost function J(θ) (see Equation 4)
calculated from f would be minimized to find optimal θ.

J(θ) =C

m∑
i=1

y(i)cost1(θ
T f (i)) + (1− y(i))cost0(θT f (i))

+
1

2

m∑
j=1

θ2j

(4)

where C is a parameter defined manually, y(i) is the label of i-th
input example (i.e. the label of x(i)), θT means θ transpose and

cost1(θ
T f (i)) = log(

1

1 + e−θT f(i)
),

cost0(θ
T f (i)) = log(1− 1

1 + e−θT f(i)
)

(5)
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and

θT f (i) = θ1f
(i)
1 + θ2f

(i)
2 + · · ·+ θmf

(i)
m (6)

The classifier model would be finally determined by the optimal
θ. In a word, SVM trains the inputs and then output a classifier
model which conducts fine-grained identification to the six types
of abnormal driving behaviors.

D. Detecting and Identifying Abnormal Driving Behaviors

After we obtain a classifier model, we are able to detect and
identify abnormal driving behaviors in real driving environments
using the model. In order to identify current driving behavior
using the model, we should input features extracted from patterns
of a driving behavior. D3 thus need to determine the beginning
and ending of the driving behavior first, i.e. cutting patterns of the
driving behavior. Fig.5 shows the readings from a smartphone’
accelerometer and orientation sensor on x-axis and y-axis in a
one minute driving, which contains a weaving behavior. In Fig.5,
the weaving behavior is sensed from its beginning to ending.

TABLE I: Features Extracted

Feature Description

rangeacc,x subtraction of maximum minus minimum value of accx

rangeacc,y subtraction of maximum minus minimum value of accy

σacc,x standard deviation of accx

σacc,y standard deviation of accy

σori,x standard deviation of orix

σori,y standard deviation of oriy

µacc,x mean value of accx

µacc,y mean value of accy

µori,x mean value of orix

µori,y mean value of oriy

µacc,x,1 mean value of 1st half of accx

µacc,x,2 mean value of 2nd half of accx

maxori,x maximum value of orix

maxori,y maximum value of oriy

minacc,y minimum value of accy

t time duration between the begining and the ending of a
driving behavior
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Fig. 7: Box plot of FPR of identifying specific types of driving
behaviors.

The method of sensing the beginning and ending of a driving
behavior is proposed based on an analysis on the acceleration and
orientation patterns of all types of driving behaviors. Specifically,
when an abnormal driving behavior begins, the standard devia-
tion of either the acceleration or the orientation values sharply
rise to and keep a relatively high value until the ending, while
in most normal driving behaviors, the standard deviation always
presents as low and smooth. Moreover, during an abnormal
driving behavior, the magnitude of acceleration on either x-
axis or y-axis presents an extremely high value, as illustrated
in Section III. But when driving normally, the magnitude of
accelerations seldomly reaches to such a high value.

Therefore, It is simple but effective that we monitor the
standard deviation of acceleration and orientation as well as the
magnitude of acceleration of the vehicle to cut patterns of driving
behaviors. In real driving environments, we retrieve readings
from smartphones’ accelerometers and orientation sensors and
then compute their standard deviation as well as mean value in a
small window. Under normal driving, D3 compares the standard
deviation and the mean value with some thresholds to determine
whether an abnormal driving behavior begins. The window size
and thresholds can be learned from the collected data. After
the beginning of a driving behavior is found out, D3 continues
to check the standard deviation and mean value to determine
whether the driving behavior ends.

After cutting patterns of a driving behavior, effective features
can be extracted from the driving behavioral patterns and then
sent to the classifier model. Finally, the model outputs a fine-

TABLE II: Total accuracy in 20 drivers’ experiments

Driver 1 2 3 4 5

Total Accuracy (%) 98.66 96.43 95.29 95.61 97.13

Driver 6 7 8 9 10

Total Accuracy (%) 94.55 97.83 99.07 98.37 92.44

Driver 11 12 13 14 15

Total Accuracy (%) 93.46 96.30 94.02 99.59 91.35

Driver 16 17 18 19 20

Total Accuracy (%) 94.50 92.86 94.68 95.49 95.43
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Fig. 8: Total accuracy under different sizes of training set.

grained identification result. If the result denotes the normal
driving behavior, it is ignored, and if it denotes any one of
abnormal driving behaviors, D3 sends a warning message.

V. EVALUATIONS

In this section, we first present the prototype of D3, then
evaluate the performance of D3 in real driving environments.

A. Prototype

We implement D3 as an Android App and install it on
smartphones (listed in Section III-A). Fig.6 shows the user
interface of D3 and testbeds in vehicles. D3 is running by 20
drivers with distinct vehicles in real driving environments to
collect the data for evaluation. Meanwhile, Car DVRs are used
to record driving behaviors and 9 experienced drivers are asked
to recognize abnormal driving behaviors as ground truth. After a
4-month data collection (i.e. July 21 to Nov. 30, 2014, using the
same method of collecting data as described in Section III-A),
we obtain a test set with 3141 abnormal driving behaviors to
evaluate the performance of D3.

B. Metrics

To evaluate the performance of D3, we define the following
metrics based on the True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN).

• Accuracy: The probability that the identification of a be-
havior is the same as the ground truth.

TABLE III: Accuracy evaluation

Behavior Accuracy(%) Precision(%) Recall(%) FPR(%)

Normal 99.84 98.80 100.00 0.19

Abnormal 94.81 100.00 99.80 0.00

Weaving 98.43 92.55 87.87 0.63

Swerving 97.94 92.29 94.15 1.39

Sideslipping 98.60 87.96 71.43 0.37

Fast U-turn 98.49 85.71 76.00 0.54

Turning with a
wide radius

98.68 89.30 92.72 0.86

Sudden braking 95.74 97.88 99.04 1.93
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• Precision: The probability that the identifications for be-
havior A is exactly A in ground truth.

• Recall: The probability that all behavior A in ground truth
are identified as A.

• False Positive Rate (FPR): the probability that a behavior
of type Not A is identified as A.

In the following subsections, we investigate the impact of
various factors to D3 and present the details.

C. Overall Performance

The performance of D3 is evaluated by 3 levels, i.e. total
accuracy, detecting abnormal vs. normal driving behaviors and
identifying fine-grained driving behaviors.

1) Total Accuracy: Total accuracy is the ratio of correct
identifications to total identifications, containing identifications
for the six types of abnormal driving behaviors as well as
the normal. The total accuracy for each driver is evaluated
respectively in TABLE II. It can be seen that all of the 20
drivers achieve high total accuracies. Among the 20 drivers, the
lowest total accuracy is 92.44%. On average, D3 achieves a total
accuracy of 95.36%.

2) Detecting the Abnormal vs. the Normal: In this level, we
treat all types of abnormal driving behaviors as one type (i.e.
Abnormal), and merely identify whether a driving behavior is
abnormal or normal. As is shown in TABLE III, D3 performs
so excellent that almost all abnormal driving behaviors are
identified, with only 6 out of 3141 omitted. In other words, D3

could identify abnormal driving behaviors vs. normal ones with a
recall of 99.84%. In addition, none of normal driving behaviors
is identified as abnormal one, i.e. with 100% precision and 0
FPR.

3) Identifying Abnormal Driving Behaviors: D3 also realizes
fine-grained identification, i.e., discriminates Weaving, Swerving,
Sideslipping, Fast U-turn, Turning with a wide radius and
Sudden braking. TABLE III shows the identification results.
The accuracy for identifying each of the six abnormal driving
behaviors is no less than 94%, the precision is above 85%, and
the recall is more than 70%. The FPRs for identifying all types
of abnormal driving behaviors are no more than 2%. The results
show that D3 is an high-accurate system to identify various
abnormal driving behaviors.
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Fig. 10: CDF of FPR under different smartphone placements.

Moreover, we evaluate FPRs of identifying specific abnormal
types. Fig.7 shows a box-plot of the FPRs for each type of
abnormal driving behaviors and the overall FPR. As is shown
in the figure, the highest FPR of identifying specific abnormal
type is less than 2.5% and the overall FPR is around 0.9%,
which shows that D3 could implement fine-grained identification
with few false alarms. In addition, D3 performs better when
identifying weaving, sideslipping, turning with a wide radius and
fast U-turn than identifying swerving and sudden braking. This is
because the patterns of the former ones are more distinct than that
of the latter. However, the performance of identifying swerving,
sideslipping and turning with a wide radius is more stable than
identifying other abnormal driving behaviors since they have
smaller standard deviations. This is because the patterns of the
former ones are more stable than that of the latter.

D. Impact of Training Set Size

According to Section III-A, we collect 4029 abnormal driving
behaviors in total for training. The training set size (i.e. the
number of training samples) may have an impact on the training
results so that it may affect the performance of D3. We thus
evaluate the impact of the training set size. The results are shown
in Fig.8. From the figure, we observe that the more training
samples there are, the better performance D3 has. When we use
280 training samples for turning with a wide radius, sideslipping,
300 sudden braking samples, 350 swerving samples and 380
training samples for fast U-turn and weaving, respectively, D3

could identify each specific type of driving behavior with an
accuracy close to 100%. In order to guarantee the performance
of D3, we use as many training samples as possible.

E. Impact of Traffic Conditions

The traffic conditions may affect the drivers’ driving behaviors
and further affect the performance of D3. We analyze traces
during peak time and off-peak time respectively to evaluate
the impact of traffic conditions. Fig.9 shows the accuracies of
identifying specific types of abnormal driving behaviors during
peak and off-peak time. It can be seen that D3 achieves good
accuracy during both time periods, and the accuracy in off-
peak time is slightly higher than that in peak time. This is
because during peak time, the vehicles perform less drastic
actions due to traffic jams. So some abnormal driving behaviors
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present restrained patterns during peak time. Different types of
abnormal driving behaviors thus are much easier to be mistaken
by each other and even be mistaken as normal driving behaviors.
Nevertheless, during off-peak time, the patterns of all types of
driving behaviors are performed more obvious. So different types
of abnormal driving behaviors are more distinguishable.

F. Impact of Road Type

Drivers could perform abnormal driving behaviors on highway
or local road, thus we further investigate the impact of the
two road types on the performance of D3. Fig.9 shows how
road types affect the accuracy of identifying various types of
abnormal driving behaviors. It can be seen that D3 achieves
good accuracy both on highway and local road, but the accuracy
is slightly higher on highway than that on local road. This is
because the better road condition on highway could reduce the
fluctuations caused by bumpy surfaces. Since highway is more
smooth and has less slopes compared with local road, there are
less disturbances then. In addition, there are less curves and no
traffic light stops on the highway, so when driving normally on
the highway, drivers have less chance to perform drastic actions.
As a result, D3 can achieve a better performance on highway
than that on local road.

G. Impact of Smartphone Placement

Smartphones could be arbitrarily placed in vehicles, we thus
investigate the impact of smartphone placement. In our exper-
iments with 20 vehicles, smartphones are fixed on instrument
panel, cupholder on the center console, front passenger seat,
or left rear passenger seat, where smartphone sensors’ y-axis is
aligned along the moving direction of vehicles, or on arbitrary
placement (i.e. smartphones are put in the driver’s pocket and its
pose could be arbitrary). Fig.10 shows the CDF of FPRs of fine-
grained identifications under different smartphone placements. It
can be seen that D3 can achieve low FPRs under all smartphone
placements, which shows D3 performs excellent wherever the
smartphone is placed in a vehicle. Although there is slightly
higher FPR under arbitrary placement because of errors in the
coordinate reorientation process, a FPR of less than 2% in 90%
of the cases is still a good result.

VI. CONCLUSION

In this paper, we address the problem of performing abnormal
driving behaviors detection (coarse-grained) and identification
(fine-grained) to improve driving safety. In particular, we propose
a system, D3, to detect and identify specific types of abnormal
driving behaviors by sensing the vehicle’s acceleration and
orientation using smartphone sensors. Compared with existing
abnormal driving detection systems, D3 not only implementes
coarse-grained detections but also conducts fine-grained identi-
fications. To identify specific abnormal driving behaviors, D3

trains a multi-class classifier model through SVM based on the
acceleration and orientation patterns of specific types of driving
behaviors. To obtain effective training inputs, we extract 16
effective features from driving behavioral patterns collected from
the 6-month driving traces in real driving environments. The

extensive experiments driving in real driving environments in
another 4 months show that D3 achieves high accuracy when
detecting and identifying abnormal driving behaviors.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation CNS1217387 and CCF1018270, the 973 Program
2014CB340303, NSFC 61170238, NSFC 61373157, Changjiang
Scholar and Innovative Research Team in University (IRT1158,
PCSIRT) China.

REFERENCES

[1] World.Health.Organisation. The top ten causes of death. [Online].
Available: http://www.who.int/mediacentre/factsheets/fs310/en/

[2] C. Saiprasert and W. Pattara-Atikom, “Smartphone enabled dan-
gerous driving report system,” in Proc. HICSS, 2013.

[3] M. V. Yeo, X. Li, K. Shen, and E. P. Wilder-Smith, “Can svm
be used for automatic eeg detection of drowsiness during car
driving?” Elsevier Safety Science, vol. 47, pp. 115–124, 2009.

[4] S. Al-Sultan, A. H.Al-Bayatti, and H. Zedan, “Context-aware
driver behavior detection system in intelligent transportaion sys-
tem,” IEEE Trans. on Vehicular Technology, vol. 62, pp. 4264–
4275, 2013.

[5] J. Paefgen, F. Kehr, Y. Zhai, and F. Michahelles, “Driving behavior
analysis with smartphones: insights from a controlled field study.”

[6] Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin,
“Sensing vehicle dynamics for determining driver phone use,” in
Proc. ACM MobiSys, 2013.

[7] H. Han, J. Yu, H. Zhu, Y. Chen, J. Yang, Y. Zhu, G. Xue, and
M. Li, “Senspeed: Sensing driving conditions to estimate vehicle
speed in urban environments,” in Proc. IEEE INFOCOM, 2014.

[8] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivas-
tava, “Using mobile phones to determine transportation modes,”
ACM Trans. on Sensor Networks, vol. 6, no. 13, 2010.

[9] J. Dai, J. Teng, X. Bai, and Z. Shen, “Mobile phone based drunk
driving detection,” in Proc. PervasiveHealth, 2010.

[10] M. Fazeen, B. Gozick, R. Dantu, M. Bhukuiya et al., “Safe driving
using mobile phones,” IEEE Trans. on Intelligent Transportation
Systems, vol. 13, pp. 1462–1468, 2012.

[11] U.S.NHTSA. The visual detection of dwi motorists. [Online].
Available: http://www.shippd.org/Alcohol/dwibooklet.pdf

[12] D. Lee, S. Oh, S. Heo, and M. Hahn, “Drowsy driving detection
based on the driver’s head movement using infrared sensors,” in
Proc. IEEE ISUC, 2008.

[13] M. Kaneda, H. Obara, and T. Nasu, “Adaptability to ambient light
changes for drowsy driving detection using image processing,” in
JSAE Review, 1999.

[14] N. Condro, M.-H. Li, and R.-I. Chang, “Motosafe: Active safe
system for digital forensics of motorcycle rider with android,”
IJIEE, vol. 2, no. 4, pp. 612–616, 2012.

[15] H. Eren, S. Makinist, E. Akin, and A. Yilmaz, “Estimating driving
behavior by a smartphone,” in Proc. IEEE IV, 2012.

[16] Y. Wang, J. Yang, and Y. Chen, “Tracking human queues using
single-point signal monitoring,” in Proc. ACM MobiSys, 2014.

[17] P. Harrington, Machine Learning in Action. Manning Publica-
tions, 2012.

[18] Y. Guo, L. Yang, X. Ding, J. Han, and Y. Liu, “Opensesame:
Unlocking smart phone through handshaking biometrics,” in Proc.
IEEE INFOCOM, 2013.

[19] C. Chang and C. Lin, “Libsvm: a library for support vector
machines,” ACM Trans. on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 1–27, 2011.

[20] H. Han, J. Yu, H. Zhu, Y. Chen, J. Yang, G. Xue, Y. Zhu, and
M. Li, “E3: Energy-efficient engine for frame rate adaptation on
smartphones,” in Proc. ACM SenSys, 2013.

9

2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

532


