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Abstract—Sleep monitoring has drawn increasingly attention
as the quality and quantity of the sleep are important to maintain
a person’s health and well-being. For example, inadequate
and irregular sleep are usually associated with serious health
problems such as fatigue, depression and cardiovascular disease.
Traditional sleep monitoring systems, such as PSG, involve
wearable sensors with professional installations, and thus are
limited to clinical usage. Recent work in using smartphone
sensors for sleep monitoring can detect several events related
to sleep, such as body movement, cough and snore. Such
coarse-grained sleep monitoring however is unable to detect
the breathing rate which is an important vital sign and health
indicator. This work presents a fine-grained sleep monitoring
system which is capable of detecting the breathing rate by
leveraging smartphones. Our system exploits the readily available
smartphone earphone placed close to the user to reliably capture
the human breathing sound. Given the captured acoustic sound,
our system performs noise reduction to remove environmental
noise and then identifies the breathing rate based on the signal
envelope detection. Our system can further detect detailed sleep
events including snore, cough, turn over and get up based on
the acoustic features extracted from the acoustic sound. Our
experimental evaluation of six subjects over six months time
period demonstrates that the breathing rate monitoring and sleep
events detection are highly accurate and robust under various
environments. By combining breathing rate and sleep events,
our system can provide continuous and noninvasive fine-grained
sleep monitoring for healthcare related applications, such as sleep
apnea monitoring as evidenced by our experimental study.

I. INTRODUCTION

There exists a broad array of healthcare related applications

that benefit from fine-grained sleep monitoring – non-obtrusive

breathing rate monitoring for the understanding of the sleep

quality. For example, inadequate and irregular sleep can lead to

serious health problems such as fatigue, depression, cardiovas-

cular disease and anxiety [1]. And breathing rate monitoring is

critical to detect early signs of several diseases such as diabetes

and heart disease [2], [3]. The breathing rate monitoring can

also be applied in the sleep apnea diagnosis and treatment [4],

treatment for asthma [5] and sleep stage detection [6]. It is

thus important to enable the fine-grained sleep monitoring to

facilitate these healthcare related applications.
The challenge in fine-grained sleep monitoring lies in so-

lutions providing breathing rate detection without requiring

invasive diagnostic devices and at a minimal cost. Traditional

sleep monitoring systems, such as Poly-somnography (PSG)

[7], are able to provide fine-grained sleep monitoring includ-

ing breathing rate detection. These systems however involve

multiple wearable sensors and professional installations, and

thus are limited to clinical usage. The high complexity and

cost prevent these systems from large scale and long term

deployment. Some commercial monitoring products including

ZEO, Fitbit and Sleep Tracker [8] have been designed based

on PSG. They require the user’s involvement and are hard

to use: the user is required to wear a device during sleep,

which may affect or change his/her daily sleep habits. Several

smartphone Apps, such as Sleep as Android, Sleep cycle alarm

clock and iSleep [9], use the smartphone’s built-in microphone

and motion sensors to perform noninvasive sleep monitoring.

These apps can only support coarse-grained monitoring such

as the detection of body movements, coughing and snoring.

This work demonstrates that it is possible to achieve fine-

grained non-invasive sleep monitoring at a minimal cost

without the involvement of diagnostic devices by exploiting

the off-the-shelf smartphone and its earphone. Our system

captures the breathing sound generated by the air flow for

breathing rate detection. Studies [10] show that the airway

flow is correlated with the amplitude of the respiratory sound

during normal breathing. It is thus possible to monitor the

breathing rate based on the breathing sound. Several unique

challenges present when utilizing the breathing sound for

supporting the fine-grained sleep monitoring. First, the sound

of the user’s breathing is usually weak, posing difficulty in

capturing the breathing sound by using the smartphone’s built-

in microphone. Second, the background noise generated by

various sources including the air conditioning, heater and

traffic outside the house significantly affects the recording of

the breathing sound. Third, the acoustic characteristics of the

breathing sound vary dramatically among users, requiring the

breathing rate detection method to be adaptive to different

users.

Specifically, we take the viewpoint by using the low-cost

smartphone’s earphone to capture human breathing sound. The

earphone, a standard piece in phone’s sales package, has been

widely used when listening to music, watching videos and

making calls on smartphones. A recent study [11] reports

that over 70 percent of smartphone users listen to music or

make calls daily using earphones. Furthermore, before going

to sleep at night, people tend to use earphones when listening

to music, news, stories, etc. from smart devices and place the

earphone aside on the pillow when sleeping. They can also

intentionally place earphones in such positions for monitoring

purposes if needed. This is different from asking users to place

the smartphone close to them during sleep. It is thus natural to

exploit the earphone to capture the breathing sound. We find

that the sound monitoring quality could be largely improved



when using the earphone (although it is a small add-on piece to

the smartphone) comparing using the standard built-in sensors

on smartphones.

The benefit of using earphone is four-fold. First, the micro-

phone on earphone has a higher recording quality than that of

the smartphone built-in microphone, resulting in more reliable

recorded breathing sound. Second, many users are resistant

to place the smartphone close to them during sleep due to

the concern of electromagnetic radiation. However, users tend

to leave the earphone plugged into their ears or put it aside

on their pillows during sleep. Third, we find that the earbuds

on earphone could be used as microphones, which helps to

enhance the recording ability of the breathing sound. Fourth,

using earphone can also capture other sleep related events

easily such as snoring, coughing, turn-over and get up.

Given the recorded acoustic sound from the earphone, we

perform noise estimation and subtraction to reduce the impact

of background noise. We then exploit the high correlation

between a user’s breathing cycles to make our breathing

rate detection method adaptive to different users. Finally,

we use acoustic features extracted from acoustic sound for

sleep event (e.g., snoring, coughing, turn-over and get up)

detection. By combining breathing rate and sleep events, our

system provides continuous and noninvasive fine-grained sleep

monitoring for healthcare related applications (such as sleep

apnea monitoring) as evidenced by our experimental study. We

summarize our main contributions as follows:

• We find that using the smartphone earphone is a promis-

ing approach to capture the breathing rate for fine-grained

sleep monitoring.

• Our system built on the smartphone earphone can achieve

continuous and noninvasive breathing rate monitoring

without involving additional diagnostic devices.

• By exploiting the correlation relationship inherent in

a user’s breathing cycles, our breathing rate detection

method is adaptive to different users.

• Our approach has the capability to detect various sleep

events easily including snoring, coughing, turn over and

get up. By combining the detected breathing rate and

sleep events, our system facilitates healthcare related

applications, such as sleep apnea monitoring.

• We evaluate our system with six subjects over six months

time period. The results show that our system is highly

accurate and robust in breathing rate monitoring and sleep

event detection under various scenarios.

The rest of the paper is organized as follows. We first

present the related studies in Section II. We then describe

the design of our fine-grained sleep monitoring system in

Section III. Next, we present the system implementation and

case study in Section IV. In Section V, we validate the

feasibility of our proposed system through real experiments.

Finally, we conclude our work in Section VI.

II. RELATED WORK

Medical-based sleep monitoring systems are developed for

clinical usage. In particular, Polysomnography (PSG) [7] is

used in medical facilities to perform fine-grained sleep moni-

toring by attaching multiple sensors on patients, which require

professional installations. It can measure many body functions

during sleep including breathing functions, eye movements

(EOG), heart rhythm (ECG) and muscle activity. Such systems

incur high cost and are usually limited to clinical usage. Actig-

raphy [12] has been developed as an affordable alternative

to monitor human sleep and wakefulness based on the body

movement detection. The Actigraphy however cannot monitor

breathing rate.
Furthermore, light-weight coarse-grained sleep monitoring

products are developed based on PSG or Actigraphy. A

popular monitoring product called ZEO measures the elec-

trical signals produced by the brain using sensors in the

headband worn by users to infer sleep patterns. Fitbit and

Sleep Tracker [8] detect body movements by using wearable

accelerometer sensor to infer how long and how well the

person sleep. These products mainly infer the people’s sleep

length and do not have the capability to perform fine-grained

sleep monitoring. They also require user’s involvement by

wearing a device during sleep, which may affect the user’s

sleep habits, and many are even resistant to follow.
There are also recent work dedicated for breathing rate

monitoring. The capnometer system [13] uses the gas analyzer

to measure the carbon dioxide concentration in exhaled air.

However, the price is relatively high and may not be affordable

for some users. The recent work of using wireless network [14]

for detecting breathing rate has the limitation of high cost

as well: dedicated wireless sensors are used to monitor the

changes of received signal caused by breathing.
Several smartphone Apps, such as Sleep as Android, Sleep

cycle alarm clock and iSleep [9], can perform low cost sleep

monitoring by using the smartphone built-in microphone and

motion sensors. These apps however only provide coarse-

grained monitoring such as the detection of body movements,

coughing and snoring. [15] utilizes the phone usage features

such as the duration of phone lock to measure sleep duration.

The Respiratory app [16] derives a person’s respiratory rate

by analyzing the movements of the user’s abdomen when

placing the phone between the user’s ribcage and stomach.

This method requires user’s involvement and attention, and is

thus hard for continuous fine-grained sleep monitoring.
Our work is different in that we provide fine-grained sleep

monitoring by leveraging the smartphone earphone, which is

readily available sold together with almost all the phones.

Our system is low-cost, nonobtrusive and easy-to-use without

requiring dedicated sensors or professional installation.

III. SYSTEM DESIGN

In this section, we discuss the system requirements and

provide an overview of our system design.

A. System Requirements

Our system aims to provide continuous and noninvasive

fine-grained sleep monitoring using smartphones. Specifically,

our system is designed to meet the following requirements:
Supporting Fine-grained Sleep Monitoring. Our system

should be able to detect both breathing rate and detailed sleep

events. Such fine-grained monitoring is essential for many

healthcare related applications, such as the diagnosis of sleep

apnea, asthma, diabetes and heart disease.
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Fig. 1. System flow of fine-graind sleep monitoring.

Easy to Use. Since our system is designed to perform

continuous sleep monitoring, it should be noninvasive: no

sensors are needed to be attached to the user as the wearable

sensors may affect the user’s sleep habits. Moreover, our

system should be low-cost: re-use existing devices in our daily

life without professional installation.
Robust Across Different Environments. The background

noise generated by various sources including the air condi-

tioning, heater and traffic outside the house is unavoidable

during sleep. Our system should be able to provide effective

fine-grained sleep monitoring under such noisy environments.

Light Weight. Due to the limited computational resources

of the smartphones, the designed algorithms should be

lightweight in order to process the collected data in real time.

B. System Overview

The basic idea of our system is to use smartphone’s ear-

phone to capture the breathing sound for fine-grained sleep

monitoring. The earphone is included in most off-the-shelf

smartphones’ sales package as a standard accessory and it is

used with smartphones extensively: over 70 percent of smart-

phone users like to carry earphones with their smartphones

while watching videos, enjoying music and making calls [11].

Furthermore, many people tend to use earphones to listen to

music, news, or other programs from smart devices before they

fall asleep. It is thus possible for us to explore utilizing the

smartphone’s earphone to capture breathing sound for sleep

monitoring.
As illustrated in Figure 1, the system takes as input the

time-series acoustic signal captured by the earphone placed

close to the user. The sound can be further enhanced by

using the input from the earbuds after connecting the ear-

buds with the output of the microphone by using off-the-

shelf connecters. The acoustic signal is then preprocessed to

remove environmental noise via noise reduction. The next two

components of our system are the breathing rate detection and

sleep event detection. Given the input sound, we first perform

signal envelop detection, based on which the breathing rate can
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Fig. 2. Frequency response of (a) Smartphone built-in microphone and (b)
Microphone on earphone

be identified adaptively for different users. In the meanwhile,

our system also has the ability to detect the sound of sleep

related events, such as snoring, coughing, turn over and get

up. And the sleep event detection can be done based on the

extracted acoustic features from the recorded sound. Such

capabilities enable our fine-grained sleep monitoring system

to support many healthcare related applications in the way the

coarse-grained monitoring approaches not possible, such as the

diagnosis of sleep apnea, asthma, diabetes and heart disease.

To demonstrate the usability of our system, we perform

a case study of sleep apnea monitoring. In particular, we

calculate the Apnea-hypopnea Index based on the detected

breathing rate for sleep apnea monitoring in Section IV-D.

C. The Use of Earphone

Although earphone is a small add on piece to smartphones,

our system benefits from the earphone in several aspects:

high recording quality when comparing to smartphone built-

in microphone; small size and extension wires make the

earphone reach out to the user; the earbuds could be utilized

for enhancing the sound quality; and the capability of stereo

recording. We next introduce several ways the earphone can

be used to record breathing sound. Specifically, we can fully

utilize the microphone on earphone, the earbuds and the stereo

recording capability.

1) Microphone on earphone: We find that the microphone

on the earphone has a better recording quality than the built-in

microphone on the smartphone. It is also relatively easier to

keep the earphone close to user because of its small size and

extension wires. These advantages make the earphone’s mi-

crophone a more reliable source to record the weak breathing

sound during sleep.

Figure 2 depicts the recorded sound quality comparison

between the earphone’s microphone and the smartphone built-

in microphone. In particular, Figure 2 (a) and (b) show the

spectrum of sounds recorded by the built-in microphone on

Iphone 4 and the earphone’s microphone when we play a chirp

signal with 50 milliseconds from 0 Hz to 20000 Hz, respec-

tively. We place the recording devices at the same distance

from the speaker. We find that the spectrum of sounds recorded

by the earphone’s microphone is very similar to the spectrum

of the original chirp signal, while the spectrum of sounds

recorded by the built-in microphone degrades significantly

from that of the original chirp signal. This indicates that the

earphone’s microphone has better frequency response than the

built-in microphone, suggesting the earphone’s microphone
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is a better choice for sound recording in addition to its

advantages of small size and extension wires.

2) Earbuds: The earbuds on earphone are essentially mi-

crophones. Earbuds produce acoustic waves, and they can

also pick up sound in the same way as microphone does.

Earbuds and microphones are both transducers and they can

perform the same functionality. We thus can utilize earbuds as

additional microphones to enhance the sound quality.

Figure 3 (a) shows the detailed connections when we use the

earbuds to capture the breathing sound and connect the output

of earbuds with the phone’s microphone. Specifically, the con-

nections consist of one earphone splitter and three earphone

adapters: the splitter can split one set of audio output/input to

two separate sets of output/input. Thus, it allows us to connect

two separate microphone connections together for use with

the smartphone. Whereas the Adaptor 1 converts the earphone

plug into two plugs: one for earbuds and the other for the

earphone’s microphone. Adaptor 2 and 3 then enable these

two plugs to be connected with the two microphone outputs of

the splitter. Finally, the splitter combines the plug for earbuds

and plug for the earphone’s microphone together and connect

it with the microphone output on the smartphone. The earbuds

then work as additional microphones during the recording to

improve the sound quality.

3) Stereo recording: Since the earbuds can be used for

recording, we can further perform stereo recording (i.e., two

channels) with one single earphone: the earbuds as the left

stereo input channel and the microphone as the right stereo

input channel. To enhance the recording quality, we then com-

bine two audio channels by deriving the maximum samples

from these two independent inputs, rather than processing

samples from each channel separately.
Figure 3 (b) illustrates the stereo audio recording with

one single earphone by using an audio interface (Fostex AR-

4i [17]) and an adapter. The audio interface offers a stereo

audio recording and is increasingly popular in recent years as

more and more people use it together with their smartphones.

Similarly, the Adaptor 1 also converts the earphone plug into

two plugs: one for earbuds and the other for the earphone’s

microphone. The plug for earbuds is then connected to the

left stereo input channel, whereas the plug for earphone’s

microphone is connected to the right stereo input channel

of AR-4i. We can therefore obtain more reliable breathing

sound under stereo recording, especially under the noisy

environments.
In our system implementation, we evaluate our system with

different usage of the earphone. The following three usages

have been implemented based on the availability of connector

and audio interface. 1) Microphone Only: only the microphone

on earphone is used for recording; 2) Earbuds + Microphone:

both the microphone and earbuds are used for mono recording;

3) Stereo Recording: two earbuds are used to record as one

independent channel and the microphone is used to record

as another independent channel. The detailed performance

evaluation of these three recording methods is presented in

Section V.

IV. SYSTEM IMPLEMENTATION AND CASE STUDY

In this section, we present the detailed system implementa-

tion of our fine-grained sleep monitoring system.

A. Noise Reduction

Most people usually sleep in a relatively quiet environment.

However, the background noise generated by various sources

including the air conditioning, heater and traffic outside the

house is unavoidable during sleep. The thermal noise from

recording equipments while recording also affects the breath-

ing sound recording. Both the background and thermal noise

acoustically added to the breathing sound may significantly

degrade the performance of sleep monitoring. To build a robust

system, we first perform noise reduction to reduce the effects

of the the background and thermal noise.
1) Noise Detection: Noise reduction aims to clean the

recorded acoustic sounds by subtracting the estimated noise

components. In our work, we propose to estimate the noise

components from time frames that only contain ambient noise

(i.e., noise frames). We thus first distinguish the noise frames

from the non-noise frames in the recorded acoustic sounds.
Specifically, the collected acoustic signal is first sampled

with the frequency of 8 kHz and segmented into frames with

K = 800 samples each. A bandpass filter is then applied to

the raw audio data to remove both high and low frequency

sounds that are not related to the breathing events. The lower

and upper cutoff frequencies are set as 100 Hz to 3400 Hz.

We choose the lower cutoff frequency as 100 Hz because it

can remove most of the common electronic noise at lower

frequency band. The upper cutoff frequency at 3400 Hz is

selected because the most sound generated by breathing or

sleep related events is below 3400 Hz [18].
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The key difference between the ambient noise and the

breathing sound is their stability. This is due to the fact that

the amplitude of the ambient noise does not vary significantly

within a short period (e.g., a few seconds). We thus can detect

frames that only contain ambient noise from a sequence of

frames by calculating the variance vi = var(Fi) for the i-th
frame Fi to capture the stability of the acoustic signal within

the frame. However, such variances may vary with different

noise profiles. To deal with this, our system further performs

the variance normalization to achieve a robust noise detection:

vi =
vi − vmean

vstd
(1)

where vmean and vstd denote the mean and standard deviation

of variance values within an observation window respectively.

After normalization, we conduct a statistical study and empir-

ically choose 1 as the threshold to identify the noise frames

as follows: if vi < 1, frame Fi will be detected as the frame

that only contain ambient noise and vice versa.
2) Noise Subtraction: After detecting the noise frames, our

system performs noise subtraction by estimating the noise

spectral magnitude from the detected frames. Specifically, let

{r̂(l), 0 ≤ l ≤ N − 1} be a sequence of acoustic samples

after filtering and {n(l), 0 ≤ l ≤ N − 1} be the noise

that has been added to the clean acoustic signal {r(l), 0 ≤
l ≤ N − 1}. Their relationships thus can be represented as

{r̂(l) = r(l) + n(l), 0 ≤ l ≤ N − 1}. Taking the Fourier

transform, we have:

R̂(ejw) = R(ejw) +N(ejw) (2)

where R̂(ejw), R(ejw) and N(ejw) denote the Fourier trans-

form of sequence r̂(l), r(l) and n(l), respectively. To estimate

the frequency spectrum of the breathing sound R(ejw), we

can estimate the noise magnitude spectrum N(ejw) and then

subtract it from the spectrum of the recorded acoustic data

R̂(ejw):
R(ejw) = [

∣

∣

∣
R̂(ejw)

∣

∣

∣
− E(

∣

∣N(ejw)
∣

∣)]ejθR̂(ejw ) (3)

where the magnitude of the noise is estimated using the av-

erage value E(
∣

∣N(ejw)
∣

∣) derived from detected noise frames

and the phase is estimated by the phase of R̂(ejw). Finally, we

can obtain the cleaned acoustic signal {r(l), 0 ≤ l ≤ N − 1}
after taking the Inverse Fourier transform on R(ejw).

B. Breathing Rate Detection

After noise reduction, we first extract the envelope of the

acoustic signal. We then utilize the strong correlation relation-

ship between breathing cycles to search for the time length

between the breathing cycle pattern to derive the breathing

rate.
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1) Envelope Detection: The envelope captures the trend

changes of the acoustic signal and thus can be used for the

breathing cycle detection. Given N acoustic samples have been

equally divided into L frames with K = 800 samples each:

Fi = {r(l), (i − 1)K ≤ l < iK − 1}, i = 1, ..., L with

LK = N , we first computes the maximum absolute value

of the acoustic samples in each frames as Mi = max(|Fi|) =
max{|r(l)|, (i − 1)K ≤ l < iK − 1}. We then perform the

interpolation to make the length of each sequence consistent.

The interpolation allows the sequence of maximum absolute

values having the same length as the sequence of the input

acoustic samples. In particular, we align the extracted sequence

{Mi, i = 1, ..., L} to the length N by using the cubic spline

interpolation. The sequence after interpolation is considered

as the detected envelope and can be represented as:

{e(0), ..., e(N − 1)} = Interpolation{M1, ...,ML} (4)

2) Breathing Rate Identification: The identified envelope

{e(l), l = 0, ..., N − 1} contains the information of the

breathing cycles. To identify the breathing rate, we utilize

the correlation inherent in the user’s breathing cycles. The

correlation among breathing cycles allows us to detect a user’s

breathing rate accurately. This is because the time length

between the breathing cycle patterns is resistant to the acoustic

sample distortion caused by irregular breathing. To identify

this time length, we examine the similarity between acoustic

samples as a function of the time lag between them. The basic

idea is that the acoustic samples should be highly correlated

when the time lag is equal to the breathing period. Such time

lag can be then used to identify the breathing rate.

Note that the period of a periodic signal (i.e., the envelope

{e(l), l = 0, ..., N − 1}) is defined as the smallest amount

of samples it takes to repeat itself. Thus, it always satisfies

e(l) ≈ e(l + t) if t is equal to the period. We assume

the minimum and maximum interval between the breathing

cycles under normal conditions have Tmin and Tmax samples

respectively. Given the range of adult’s possible breathing

rate and the sampling frequency of the microphone, we can

determine reasonable values for Tmin and Tmax as 24000 and

80000 samples, respectively. We then define a function f(t) to

measure the similarity between acoustic samples as a function

of the time lag t between them:

f(t) =

N−Tmax−1
∑

l=0

|e(l)− e(l + t)|

N − Tmax

, Tmin ≤ t ≤ Tmax (5)



We illustrate the f(t) computation in Figure 4. When we

increase the value of t, the values of f(t) increase and

decrease successively, indicating similarity between any pairs

of samples in the envelope {e(l), l = 0, ..., N − 1} with

a distance of t: larger values denote the similarity is lower

while smaller values denote the similarity is higher. Thus, to

identify the breathing rate, we search for a set of W local

minimums (i.e., MinSet = {τk, 1 ≤ k ≤ W}) from f(t)
by varying t from Tmin to Tmax. For each τk ∈ MinSet,
it satisfies that f(τk) < f(t) for any t ∈ (τk − d, τk + d),
where d is a pre-defined small distance with d > 0. Since

the period of a periodic signal is defined as the smallest

amount of samples it takes to repeat itself, ideally, the first

local minimum τ1 should therefore correspond to the period

of envelope {e(l), l = 0, ..., N − 1}.

However, identifying the τ1 accurately is challenging be-

cause the detected first local minimums could be affected by

the noise existed in the acoustic sound. For this reason, we

utilize the fact that the consecutive breathing cycles should

have a high similarity in the collected acoustic data. Thus, the

"true" first local minimum that corresponds to the period of en-

velope should hold a relatively smaller value than other nearby

local minimum points. So it is natural for us to think about

using a sliding window to remove the local minimums with

relatively larger values. Specifically, given the window length

P and consecutive P samples Rj = {f(t), j ≤ t < j + P}
from f(t), for all the local minimums in Rj , we only keep

the local minimum which equals to the smallest value of

Rj and remove other local minimums from the set MinSet.
In this work, we empirically set the P as the number of

samples a typical breathing cycle has with P = 40000 samples

and the algorithm of local minimum removal is provided in

Algorithm 1. After the removal process, the "true" first local

minimum τ1 which corresponds to the period of envelope

{e(l), l = 0, ..., N − 1} can therefore be detected. And the

breathing rate thus can be identified as 1/τ1.

Figure 5 shows an example on how the local minimums

are removed in MinSet from a real experiment. In this

experiment, the groundtruth of the user’s breathing rate is

about 14.5 breaths per minute (bpm) (i.e., the breath interval

is about 32800 samples). In Figure 5, the detected local

minimums in MinSet before local minimum removal are

shown as red circles. To conduct the local minimum removal, a

window with the length P slides across the sequence of f(t)
values: for each window position, only the local minimum

point that equals to the smallest value in the window is kept

and other local minimums are deleted. The deleted points are

shown as red crosses. Before local minimum removal, the

detection of first local minimum is not accurate due to τ1
does not correspond to the true breath interval of the user.

After local minimum removal, we find that the previous first

local minimum τ1 has been deleted and τ2 becomes the new

first local minimum, which is detected as the user’s breath

interval. This value is very close to the user’s true breath

interval as shown by the green dotted line in Figure 5. This

result is encouraging as it indicates that our local minimum

removal algorithm can help our system to achieve an accurate

and robust breathing rate detection.

Algorithm 1 Local Minimum Removal

INPUT:
f(t); Pre-defined function
MinSet = {τk, 1 ≤ k ≤ W}; W local minimums of f(t)
P ; Length of the sliding window
Tmin; The minimum breath interval
Tmax; The maximum breath interval

PROCEDURES:
for All j ∈ [Tmin, Tmax − P ] do

Rj = {f(t), j ≤ t < j + P} ;
for All k ∈ [1,W ] do

if f(τk) ∈ Rj&f(τk) > min(Rj) then
delete τk from MinSet

end if
end for

end for
Return MinSet

C. Event Detection

To detect the sleep related events, we first extract the

acoustic features (i.e., Mel-frequency cepstral coefficients)

from the recorded sound. Based on the extracted features, we

utilize Support Vector Machine (SVM) [19] as classifier to

detect and identify each sleep event including including snore,

cough, turn over and get up.

As shown in [20], the Mel-frequency cepstral coefficients

(MFCCs) can characterize the sound’s unique characters and

are not sensitive to varying acoustic profiles. The MFCCs can

be used to distinguish sound frames of four different sleep

events (i.e., snore, cough, turn over and get up). Thus, we

compute the MFCCs for each frame Fi = {r(l), (i − 1)K ≤
l < iK − 1} that is not detected as noise frame and consider

each coefficient within the MFCCs as a feature (i.e., we

have 12 features for each Fi). In our classification model,

we label certain sleep event’s acoustic data as the positive

class and all other sleep events’ data as the negative class. In

particular, to train the SVM classifier for each sleep event,

we select U sound frames from this event and labeled as

positive instances. We then choose U sound frames from each

of the rest events (e.g., the rest is three events), labeled as

negative instances. Thus, we have U positive instances and

U × 3 negative instances as our training set for each specific

sleep event. Training instances (including positive and negative

ones) are put together in the training data set to train the SVM

classifier. In the sleep event detection phase, the extracted

MFCCs obtained from a run-time non-noise frame is input

to the event detection model and then SVM classifier outputs

a predictive label. If the label is positive, the event detection is

a success of this time frame. Otherwise, the label is negative,

indicating this time frame does not include the sleep event we

are interested.

We find that the detection performance stabilizes when U
exceeds 100 instances, which indicates that we need to have

at least 10-second sound data from each event for training

to create a stable SVM classifier. Thus, unless otherwise

specified, we choose U = 100 instances in this paper.

D. Deriving Apnea-hypopnea Index from Breathing Rate

The apnea or hypopnea is a type of sleep disorder which

involves episodes of pauses in breathing or the abnormally

low respiratory rate [4]. Such sleep disorder may result in a
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Fig. 6. Breathing rate detection under different earphone placements and different recording methods.
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Fig. 7. Breathing rate detection under different environmental noise.

decreased amount of air movement into the lungs and is also

closely linked to some other serious diseases such as obesity,

heart disease and diabetes. However, the apnea or hypopnea

is hard for an individual to be aware of during sleep [21].

Our fine-grained sleep monitoring system has the capability

to monitor the breathing rate, making it possible for the users

to detect the apnea or hypopnea.

To quantitative measure the severity of users’ apneas and

hypopneas, we exploit user’s detected to derive the apnea-

hypopnea index. This index reports on respiratory events

during sleep and it is defined as the average number of apnea

or hypopnea events per hour of sleep. In our implementation

of index estimation, we adopt the criteria that a time period

(i.e, 30 seconds) with apnea or hypopnea is determined by a

low detected average breathing rate: if the user’s breathing rate

is less than the lower bound of adults’ normal respiratory rate

(i.e., 12 bpm), the label of this time period will be marked

as "apnea or hypopnea". Otherwise, the label is marked as

"normal", indicating this time period does not include any

apnea or hypopnea event. Finally, the apnea-hypopnea index

can thus be calculated by dividing the total number of time

periods that are marked as "apnea or hypopnea" during the

sleep period by the total number of hours of sleep.

V. PERFORMANCE EVALUATION

In this section, we conduct experiments with six subjects

over six months time period to evaluate the effectiveness

of our fine-grained sleep monitoring system and the sleep

apnea monitoring supported by our system. The following

subsections detail our experimental methodology and results.

A. Experimental Methodology

We use two iPhone 4 smartphones together with their

original earphones that support 8 kHz sampling rate for

acoustic data collection. Each iPhone 4 smartphone runs IOS

7 operation system with 512 MB RAM and a 1 GHz Cortex-

A8 processor. The acoustic readings are collected when the

users are sleeping and then written into a sound file on the

smartphone. During the experiments, we let users connect

the earphone to smartphones using three implementations of

earphone recording presented in Section III-C (i.e., Micro-

phone only, Earbuds + microphone, and Stereo recording)

and then place the earphone in three different positions: the

participant wears the earphone (i.e., Wearing earphone), the

participant puts the earphone besides the pillow (i.e., Besides

the pillow), and on the bedside table (i.e., On the bedside

table). Such positions are natural choices since many people

place earphones together with their smartphones in similar

positions during sleep. We conduct our experiments under

four representative environments: the quiet bedroom (i.e.,

Quiet bedroom), the relatively noisy bedroom with the air

conditioning on (i.e., Air conditioning), with the music on

(i.e., Music), and with the outdoor traffic noise (i.e., Outdoor

traffic).

We conduct experiments with 6 volunteers (ranging from

23 to 34 years old) over a period of 6 months to evaluate

the effectiveness of our system in breathing rate monitoring

and sleep events detection. A size of 6 users is also typical

for sleep monitoring studies [8], [15]. Unless otherwise stated,

the user chooses the microphone on earphone in the recording

and places the earphone besides the pillow in a quiet bedroom

during sleep.

To obtain the ground truth of the breathing rate, the NEU-

LOG Respiration Monitor Logger Sensor [22] is connected to

a monitor belt attached to the user’s ribcage. The ground truth

of the breathing rate is then calculated based on the air pressure

changes in the attached monitor belt. Moreover, a lavalier

microphone is clipped to the user’s collar to collect the high-

quality audio clips as the ground truth of sleep events such as

snore, cough, get up and turn over. A laptop is connected to

the lavalier microphone to store recorded clips. After the data

collection, the sleep events are then labeled manually from the

audio clips recorded by lavalier microphone.

Several metrics are used to quantify the performance of our



system for breathing rate detection and sleep event detection.

For the metrics of sleep event detection, similar in [9], we

also consider sleep events with short duration (i.e., snore and

cough events) and sleep events with long duration (i.e., turn

over and get up event) separately. These metrics are detailed

as follows:

• Breathing rate error: the difference between the rate

detected by our system and the actual rate.

• True positive rate (for short-duration events): the ratio

of the number of detected positive events to the total

number of positive events.

• False positive rate (for short-duration events): the ratio

of the number of negative events that are mistakenly

detected as positive events to the total number of negative

events.

• True positive rate (for long-duration events): the ratio

of the number of the successfully detected time frames

associated with positive events to the total number of time

frames associated with positive events.

• False positive rate (for long-duration events): the ratio

of the number of time frames associated with negative

events that are mistakenly detected as positive events to

the total number of time frames associated with negative

events.

B. Breathing Rate Detection

In the first set of experiment, we evaluate the breathing

rate detection under different earphone placements and noisy

environments.

Overall Performance. Figure 6 (a) to (c) present the

accuracy of breathing rate detection with different lengths

of observation window when the earphone is placed in three

different positions for three different earphone recording meth-

ods. We observe that the breathing rate error is within 0.5 bpm

under various position using these three recording methods.

As mentioned in [14], the rate errors less than 0.5 bpm is

insignificant because only an integer number of breathing rate

is reported by current medical devices. This demonstrates that

our system is effective in breathing rate detection with different

placements of earphone under different recording methods.

Further, we find that the lower breathing rate error is

achieved when "Earbuds + microphone" and "Stereo record-

ing" are used. This is because the recording sound can be

further enhanced by using earbuds. In addition, we observe

that the overall breathing rate error is extremely low (e.g., 0.1)

if we place the earphone close to the user, such as wearing

earphone and besides the pillow. This is because that shorter

distance between the user and the earphone leads to a higher

sound intensity at microphone.

Finally, the figure clearly shows that longer observation

window results in obvious lower breathing rate error when

the window length is shorter than 100 seconds, and this

error becomes relatively stable when the window length is

longer than 100 seconds. In particular, our system can achieve

the breathing rate error of less than 0.05 bpm. While more

breathing cycles exist in a longer observation window which

captures the breathing rate more accurately, we find that a
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Fig. 8. Sleep event detection under different environmental noise and different
recording methods.

window length of 100 seconds is enough for our scheme to

achieve a high accuracy of breathing rate detection.

Impact of Environment Noise. We next study the impact of

environmental noise on the breathing rate detection. In differ-

ent environments, the "Microphone only" is used for recording

and the earphone is placed in three different positions.

Figure 7 (a) to (c) present the accuracy of breathing rate

detection under different environments. We observe that the

overall breathing rate error remains less than 0.5 bpm (as the

red dotted line shown in the figure) across all environments

and earphone placements when the window length is longer

than 100 seconds. This demonstrates that our sleep monitoring

system can achieve a satisfactory breathing rate estimation

with 100 seconds observation window. Further, this figure

clearly shows that similar detection accuracy is achieved in

both the quiet bedroom and the room with the air conditioning

on, indicating that our system is robust to the noise.

C. Sleep Event Detection

Next, we evaluate our system by investigating the accuracy

of detecting sleep related events under various environments

with three earphone recording methods. The legends "true

pos." and "false pos." in Figure 8 denote the detection rate

and false positive rate, respectively. For each experiment, the

earphone is placed besides the pillow.

Figure 8 (a) to (d) depict the true positive and false positive

rate under various noisy environment. We observe that better

performance can be achieved when "Earbuds + microphone"

and "Stereo recording" are used. This is because the earbuds

can improve the recorded sound quality. Further, we find that

the true positive rate increases and false positive rate decreases

when we change from noisy environment to quiet bedroom.

This is because in a relatively quiet environment, it is easier to

capture and identify the sound of different sleep events from

the noise. Overall, we observe that that our system can achieve

over 80 % true positive rate with less than 10 % false positive

rate in all scenarios. This shows that our system is effective

in detecting sleep related evens and robust across different

environments.
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Fig. 9. Case study: the apnea-hypopnea index and sleep events of different users during the 7-night experiment.

D. Case Study: Sleep Apnea Monitoring

Finally, we present the results of a one-week case study by

involving three users to evaluate the performance of the fine-

grained sleep quality monitoring. Specifically, we calculate the

Apnea-hypopnea Index based on the detected breathing rate

for sleep apnea monitoring. One user (i.e., user 2) has sleep

hypopnea and another user (i.e., user 3) catches a cold during

the period of study. User 2 who has sleep hyopnea occasionally

has an abnormal low breathing rate for a duration of about one

minute during sleep. User 3 who catches a cold coughs more

frequently than others. In this study, the earphone is placed

besides the pillow and the earphone is used for recording the

sound.

Figure 9 presents the apnea-hypopnea index and events

detected by our system in each night in one week. We observe

that the apnea-hypopnea index of user 2 is higher than other

users. This is due to that user 2 has periodical low breathing

rate during sleep. It illustrates that our system can capture

the user’s breathing disorders accurately during sleep. Another

observation is that more cough events are detected for user

3 during the first 5 days of the study. This is because that

user 3 catches a cold at the beginning of the study and

recover gradually. The captured number of cough events thus

decrease gradually as user 3 recovers. In addition, the figure

also demonstrates that users (i.e., user 2 and 3) with discomfort

(i.e., cough or hypopnea) are likely to turn over or get up

during sleep. This is because: 1) the cough or hypopnea events

are usually followed by the user’ body movements; and 2)

frequent cough makes the user hard to fall asleep. These

observations strongly confirm the effectiveness of using our

system for supporting healthcare related application, such as

sleep apnea monitoring.

VI. CONCLUSION

In this work, we focus on achieving fine-grained sleep

monitoring by leveraging smartphones. We propose a practical

system that has the capability to monitor an individual’s

breathing rate as well as sleep events using off-the-shelf

smartphones. In particular, our system employs the readily-

available earphone for smartphones to capture the breathing

sound and measure the breathing rate. Our noise detection and

subtraction scheme can reduce the impact of background noise

while preserving the features present in the breathing sound for

breathing rate detection. Furthermore, our system exploits the

correlation relationship inherent in a user’s breathing cycles to

identify breathing rate accurately based on the signal envelope

detection. Through extensive experiments over six months

time period, we show that the breathing rate monitoring is

highly accurate and robust under various environments. This

strongly indicates the feasibility of using the smartphone and

its earphone to perform continuous and noninvasive fine-

grained sleep monitoring. We further demonstrate that our

system can be used to support healthcare related applications

through a case study of sleep apnea monitoring.
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