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Abstract— We consider in this paper the tracking control
problem of an underactuated surface vessel. Based on the
cascaded structure of tracking error dynamics, we present two
new tracking controllers using Barbalat’s lemma and back-
stepping techniques under mild assumptions on the reference
trajectory. The closed-loop systems achieve global asymptotical
and exponential tracking respectively. Simulation results show
that the proposed control laws are effective.

I. INTRODUCTION

Control of underactuated surface vessels has attracted
much attention recently. The state of the underactuated
surface vessel cannot be stabilized to the origin by any
smooth pure state feedback control law due to Brockett’s
necessary condition ([3]). Furthermore, the model of the
underactuated surface vessel is not drift-less, and the control
methods developed for stabilizing nonholonomic systems
cannot be directly used to solve the stabilization problem
of this system. With the effort of researchers, several stabi-
lizing control laws have been developed. Interested readers
may refer to [20][7][17][19][15][5][1].

The tracking control problem of underactuated surface
vessel has also been studied. In [2] and [9], output tracking
control is discussed based on feedback linearization and
Lyapunov theory. In [1] and [18], global practical tracking
controllers are presented, where the tracking errors are
made to converge to a neighborhood of the origin. In [14],
a K-exponential tracking controller is proposed based on
the cascaded structures of the tracking error dynamics. In
[10], an asymptotical tracking controller and an exponential
tracking controller are proposed. The asymptotical tracking
controller is derived with the passivity-based LgV -type
control strategy and the exponential tracking controller is
proposed by combining the cascade structure of the tracking
error dynamics and backstepping technique.

In this paper, we consider the tracking control problem of
an underactuated surface vessel. Under mild assumptions,
we propose new tracking controllers with the aid of the
cascade structure of the closed-loop system. In order to
propose the controllers, we first apply a nonlinear coordi-
nate transformation to the system, and the tracking error
dynamics is derived with a cascaded structure. Then an
asymptotical tracking controller is designed using Barbalat’s
lemma and backstepping. Furthermore, in order to improve
the convergence rate of the tracking error, an exponential
tracking controller is proposed by fully exploiting the
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cascaded structure of the tracking errors, which ensures
that the tracking error globally exponentially converges to
zero. Compared with existing controllers, our controllers
make the tracking errors converge to zero asymptotically
or exponentially. Good tracking performance is guaranteed
under mild assumptions made on the reference trajectories.

The rest of the paper is organized as follows. In section 2,
the problem under study is stated. In Section 3, an asymp-
totical tracking controller is designed. Then an exponential
tracking control law is presented in Section 4. In Section
5, simulation results are shown. Finally, we conclude the
paper in Section 6.

II. PROBLEM STATEMENT

Consider the tracking controller problem of an underactu-
ated surface vessel. The vessel has two propellers which are
the force in surge and the control torque in yaw. Following
the results in [8], the kinematics of the system can be written
as ⎡

⎣ ẋ
ẏ

ψ̇

⎤
⎦ =

⎡
⎣ cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

⎤
⎦

⎡
⎣ u

v
r

⎤
⎦ (1)

where (x, y) denotes the coordinate of the center of mass
of the surface vessel in the earth-fixed frame, ψ is the
orientation of the vessel, and u, v and r are the velocities
in surge, sway and yaw, respectively. Assume that

1) the environment forces due to wind, currents and
waves can be neglected in the model,

2) the inertia, added mass and damping matrices are
diagonal.

The dynamics of the surface vessel is described as ([8])
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u̇ =
m22

m11
vr − d11

m11
u +

1
m11

τ1,

v̇ = −m11

m22
ur − d22

m22
v,

ṙ =
m11 − m22

m33
uv − d33

m33
r +

1
m33

τ2,

(2)

where mii > 0 are given by the vessel inertia and the
added mass effects, dii > 0 are given by the hydrodynamic
damping, mii and dii are assumed to be constant. τ1 and
τ2 are the surge control force and the yaw control moment,
respectively.

Given a bounded feasible reference trajectory
(xd, yd, θd, ud, vd, rd) with reference input (τ1d, τ2d)
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which satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋd = ud cos ψd − vd sin ψd,
ẏd = ud sin ψd + vd cos ψd,

ψ̇d = rd,

u̇d =
m22

m11
vdrd − d11

m11
ud +

1
m11

τ1d,

v̇d = −m11

m22
udrd − d22

m22
vd,

ṙd =
m11 − m22

m33
udvd − d33

m33
rd +

1
m33

τ2d,

(3)

the tracking control problem under study is to design a
control law for system (1)-(2) such that

limt→∞(x − xd) = 0, limt→∞(y − yd) = 0,
limt→∞(ψ − ψd) = 0, limt→∞(u − ud) = 0,
limt→∞(v − vd) = 0, limt→∞(r − rd) = 0.

For the tracking problem, there are several controllers
proposed in [9], [2], [14], [10], [18], [1]. In the following
sections, we propose two new controllers: an asymptotical
tracking controller and an exponential tracking controller.
Due to space limit, proofs are omitted.

III. ASYMPTOTICAL TRACKING CONTROLLER

To facilitate the controller design, we transform (1)-(2)
into a suitable form. Applying the following state and input
transformations ([15]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 = x cos ψ + y sin ψ,
z2 = v,

z3 = −x sinψ + y cos ψ +
m22

d22
v,

z4 = ψ,
z5 = r,

z6 = −m11

d22
u − z1,

(4)

⎧⎪⎨
⎪⎩

w1 =
m11 − m22

m33
uv − d33

m33
r +

τ2

m33
,

w2 = (
d11

d22
− 1)u − z3z5 − τ1

d22
,

(5)

we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = − d22

m11
z1 − d22

m11
z6 + z3z5 − m22

d22
z2z5,

ż2 = − d22

m22
z2 +

d22

m22
z5(z1 + z6),

ż3 = z6z5,
ż4 = z5,
ż5 = w1,
ż6 = w2.

(6)

Similarly, by the transformation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1d = xd cos ψd + yd sin ψd,
z2d = vd,

z3d = −xd sin ψd + yd cos ψd +
m22

d22
vd,

z4d = ψd,
z5d = rd,

z6d = −m11

d22
ud − z1d,

w1d =
m11 − m22

m33
udvd − d33

m33
rd +

τ2d

m33
,

w2d = (
d11

d22
− 1)ud − z3dz5d − τ1d

d22
,

(7)

we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1d = − d22

m11
z1d − d22

m11
z6d + z3dz5d − m22

d22
z2dz5d,

ż2d = − d22

m22
z2d +

d22

m22
z5d(z1d + z6d),

ż3d = z5dz6d,
ż4d = z5d,
ż5d = w1d,
ż6d = w2d.

(8)
Define the tracking error to be

e = [e1, e2, e3, e4, e5, e6]T = [z1 − z1d, z2 − z2d,

z3 − z3d, z4 − z4d, z5 − z5d, z6 − z6d]T . (9)

We have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ė1 = − d22

m11
e1 − d22

m11
e6 + e3e5 + z3de5

+z5de3 − m22

d22
(e2e5 + z2de5 + e2z5d),

ė2 = − d22

m22
e2 +

d22

m22
(e1e5 + z1de5

+e1z5d + e5e6 + e5z6d + z5de6),

(10)

⎧⎪⎪⎨
⎪⎪⎩

ė3 = e5e6 + e5z6d + z5de6,
ė4 = e5,
ė5 = w1 − w1d,
ė6 = w2 − w2d.

(11)

Lemma 1: Using the transformations (4), (5), and (7),
limt→∞ ei = 0(1 ≤ i ≤ 6) implies that (x, y, ψ, u, v, r)
asymptotically converges to (xd, yd, ψd, ud, vd, rd),

System (10)-(11) is a cascaded system. An important
issue in controlling cascaded systems is to design a con-
trol law to avoid peaking phenomenon [21]. However, for
system (10)-(11), the peaking phenomenon never appears if
the sub-system (11) is asymptotically stable.

Lemma 2: For the cascaded system (10)-(11), if
(xd, yd, ud, vd, rd) is bounded and ei(3 ≤ i ≤ 6) globally
converge to zero, then e1 and e2 globally converge to zero.

Based on Lemma 2, we propose a global tracking con-
troller in two steps using backstepping [11]. In the first
step, we consider the stabilization problem of the subsystem
(e3, e4, e6). Assuming e5 is a virtual control, we design
e5 and w2 such that e3, e4 and e6 globally asymptotically
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converge to zero. The result of the first step is stated in the
following lemma.

Lemma 3: In (11), if z5d and z6d are bounded and
limt→∞ z5d(t) �= 0, let

e5 = χ, (12)

w2 = −k2(e6 − α) − z5de3 + w2d + α̇, (13)

where

α = −k3z5de3, (14)

χ = −k4e4 − k4e3(e6 + z6d), (15)

constants ki > 0(2 ≤ i ≤ 4), then e3, e4 and e6

asymptotically converge to zero, respectively.
In the second step, we design an actual control w1 so

that e3, e4, e5 and e6 asymptotically converge to zero with
the aid of the result in Lemma 3. We have the following
result.

Lemma 4: For system (11), if z5d and z6d are bounded
and limt→∞ z5d(t) �= 0, the control law

w1 = −k1(e5 − χ) − e3(e6 + z6d) − e4 + w1d + χ̇,(16)

w2 = −k2(e6 − α) − z5de3 + w2d + α̇, (17)

globally asymptotically stabilize e3, e4, e5 and e6 to the
origin, where constants ki > 0(1 ≤ i ≤ 4), α and χ are
defined in (14) and (15).

With the aid of the results in Lemma 2 and Lemma 4,
we have the following theorem.

Theorem 1: For system (6), if (xd, yd, ψd, ud, vd, rd) is
bounded and limt→∞ rd(t) �= 0, then the control law (16)-
(17) ensures that (x, y, ψ, u, v, r) globally asymptotically
converges to (xd, yd, ψd, ud, vd, rd).

In Theorem 1, a global tracking controller is proposed
with the assumption that (xd, yd, ψd, ud, vd, rd) is bounded
and limt→∞ rd(t) �= 0. In the controller, there are only four
control parameters k1, k2, k3 and k4. In order to make the
state of the closed-loop system asymptotically converge to
the given trajectory, they are only needed to be positive.
Generally, large values of ki(1 ≤ i ≤ 4) make the tracking
errors converge to zero fast. However, controller (16)-(17)
does not guarantee that the convergence rate of the tracking
error is exponential. In order to make the tracking errors
converge to zero fast, an exponential tracking controller is
proposed in the next section.

IV. EXPONENTIAL TRACKING CONTROLLER

Based on the transformation (4)-(5), we have the follow-
ing lemma.

Lemma 5: For the cascaded system (10)-(11), if
(xd, yd, ψd, ud, vd, rd) is bounded and (11) is globally ex-
ponentially stable, then (10)-(11) is globally exponentially
stable.

By Lemma 5, it only needs to consider the system (11).
For (11), we have the following result.

Lemma 6: For system (11), if (xd, yd, ψd, ud, vd, rd) is
bounded and rd satisfies∫ t

0

r2
d(s)ds ≥ δt, (∀t ≥ 0) (18)

where constant δ > 0, the control inputs

w1 = w1d − (k1 + k2)e5 − k1k2e4 (19)

w2 = w2d − k3ż5de3 − k3z5dė3 − k4e6

−(k3k4 + 1)z5de3 − e3e5 (20)

ensure ei(3 ≤ i ≤ 6) globally exponentially converge to
zero, where control parameters ki > 0(1 ≤ i ≤ 4) and
k1 �= k2.

By Lemma 5 and Lemma 6, we have the following
theorem.

Theorem 2: For system (6), if (xd, yd, ψd, ud, vd, rd) is
bounded and rd satisfies (18), control law (19)-(20) ensure
ei(1 ≤ i ≤ 6) globally exponentially converge to zero,
where control parameters ki > 0(1 ≤ i ≤ 4) and k1 �= k2.

In the control laws (19) and (20), the control parameters
are ki(1 ≤ i ≤ 4). If ki > 0(1 ≤ i ≤ 4) and k1 �= k2, the
states of the closed-loop system (10) globally exponentially
converge to zero. The exponential convergence rate of
ei(3 ≤ i ≤ 6) can be adjusted by the control parameters
ki(1 ≤ i ≤ 4). The exponential convergence rate of e1

and e2 depends on d22, m11, m22 and the exponential
convergence rate of e3, e4, e5 and e6. It should be noted
that the assumption on rd is not strict.

In this paper, we propose two tracking controllers. The
first one in Theorem 1 makes the tracking errors asymptot-
ically converge to zero, while the second one in Theorem
2 makes the tracking errors exponentially converge to zero.
However, the assumptions made on the reference trajectories
in Theorem 1 are less conservative than that in Theorem 2.

Several tracking controllers are proposed in literature.
In [1] and [18], global practical tracking controllers are
presented. The tracking errors are made to converge to a
neighborhood of the origin. While our exponential con-
troller makes the tracking errors exponentially converge
to zero. In [14], a K-exponential tracking controller is
proposed based on the cascaded structures of the tracking
error dynamics. In [10], an exponential tracking controller
is proposed. The exponential tracking controller is proposed
by combining the cascade structure of the dynamics of
the tracking errors and the backstepping technique. The
assumptions made on the reference trajectories are the
same as those in Theorem 2. Advantages of our proposed
controller over some previous results in literature include:
1) It can make the tracking errors exponentially converge to
zero; 2) The assumptions made on the reference trajectories
are less conservative and easily verified; 3) The controller
is simple and the control parameters are easily chosen.

V. SIMULATION

In this section, we study the effectiveness of the proposed
control laws by simulation. Consider an underactuated sur-

4353



face vessel with the model parameters [20]: m11 = 200kg,
m22 = 250kg, m33 = 80kg, d11 = 70kg/s, d22 = 100kg/s,
d33 = 50kg/s. Assume the initial condition of the system is
(x(0), y(0), ψ(0), u(0), v(0), r(0)) = (30,−1, 0.2, 0, 0, 0).

The reference trajectory to be tracked is similar to that in
[14]. Assume the initial reference state are xd(0) = −2m,
yd(0) = −20m, ψd(0) = 0rad, ud(0) = 1m/s, vd(0) =
−0.1m/s, rd(0) = 0.05rad/s and ud(t) = 1m/s, rd(t) =
0.05rad/s, the reference trajectory (xd, yd, ψd, ud, vd, rd)
can be generated by (3) with proper τ1d and τ2d.

We first use the control law (16)-(17) to system (1)-(2).
The control parameters are chosen as k1 = 1, k2 = 1.5,
k3 = 10 and k4 = 2. Figs 1-8 are simulation results.
Figs 1-6 show the tracking errors of the closed-loop system
converge to zero. Fig. 7 shows the desired trajectory and the
actual trajectory of the vessel in X−Y plane. Fig. 8 shows
that the two control inputs are bounded. The simulation
results verify the result in Theorem 1.

In the second simulation, the exponential stabilizing law
(19) and (20) is applied to system (6) with the model
parameters and initial condition stated above. In the control
law, we choose k1 = 1.2, k2 = 1, k3 = 10, k4 = 1.5. Figs
9-17 are simulation results. Figs 9-14 show that the given
desired trajectories and the response of each state. They
show that the states of the closed-loop system converge
to the desired trajectories. Furthermore, Fig. 15 shows that
the tracking errors exponentially converge to zero because
logarithm of absolute value of each tracking error decrease
linearly. Fig. 16 shows the desired trajectory and the actual
trajectory of the vessel in X −Y plane. Fig. 17 shows that
the control inputs are bounded.

From the simulation, the two proposed control laws all
make the tracking error converge to zero. Since the first
control law does not guarantee an exponential convergence
rate of the tracking error of the closed-loop system, the
tracking performance may be not good as one desires.
The second control law guarantees that the tracking error
exponentially converge to zero. Therefore, the performance
of the tracking error system is satisfactory.

VI. CONCLUSION

In this paper, the tracking control problem of an un-
deractuated surface vessel is considered. New asymptotical
tracking controller and exponential tracking controller are
proposed with the aid of the cascaded structure of the
error dynamics, Barbalat’s lemma, and the backstepping
technique. They can make the tracking errors converge
to zero asymptotically or exponentially. Simulation results
show the proposed controllers are effective. The ideas
developed in this paper can be applied to design controllers
of other underactuated systems.
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Fig. 13. Response of v and vd
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Fig. 14. Response of r and rd
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Fig. 15. Logarithm of absolute value of tracking errors
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