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Subgroups of a Lyndon’s free group FZ[t]

Denote F0 = F (X), a free group on a free generating set X.

We say that for w ∈ F0, its normal form is a reduced word in
generators equal to w: π(w) = w̄.
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Suppose F0 < . . . < Fn−1 and the corresponding normal form π are
constructed.

Choose u ∈ Fn−1 (not any u is good, but we skip that moment).

Then Fn is generated by Fn−1 and formal expressions of the form
{uα|α ∈ Z[t]}.
Elements uα, α ∈ Z[t]− Z are thought to be “infinite powers” of u.

That is, every element of Fn can be viewed as a word of the form

w = w1u
α1w2u

α2 · · ·wmuαmwm+1,

where m ∈ N, wi ∈ Fk−1, and αi ∈ Z[t]− Z.
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Note that α1, α2, ..., αm are not defined uniquely.

Example

Let F0 = F (x, y), u = xyx.

(xyx)2t(yx)(xyx)3t = (xyx)2t−1(xyx)(yx)(xyx)3t =

(xyx)2t−1(xy)(xyx)(xyx)3t = (xyx)2t−1(xy)(xyx)3t+1

Then we put

π(w) = π(w1) ◦ uα1 ◦ π(w2) ◦ uα2 ◦ · · · ◦ π(wm) ◦ uαm ◦ π(wm+1),

with tuple (α1, . . . , αn) maximal w.r. to left lexicographical order.
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Theorem. (Kharlampovich, Miasnikov)

Each finitely generated fully residually free group can be embedded
into Fn with suitable n and u1, . . . , un.

So the results about f.g. subgroups of FZ[t] also hold for f.g. fully
residually free groups.
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Graphs labelled by infinite words

Let G be a finitely generated subgroup of Fn.

Denote u’s used to obtain Fn by u1, . . . , un.

Let Γ be a combinatorial directed graph with edges labelled by
elements of X and exponents of u1, . . . , un.

Choose a base vertex v, and consider group

L(Γ, v) = {µ(p)|p a loop at v}
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Example

u

x x

y

ut

ut
z1

z2

1

Here, u = xyx, and the group is
G = L(Γ, 1) = 〈xutz1u

txy, xutz2u
txy〉.
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Definition

If a labelled directed graph ΓG is such that

there exists a path p with o(p) = v1, t(p) = v2 and µ(p) = g

iff
there exists a path p′ with o(p) = v1, t(p) = v2 and

µ(p) = π(g),

then the graph is called U -folded.

One can also give an explicit combinatorial definition of a U -folded
graph, which allows to construct U -folded graphs effectively.
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Theorem. (Miasnikov, Remeslennikov, Serbin)

Let G be a finitely generated subgroup of FZ[t]. Then there exists a
finite U -folded labeled directed graph ΓG with L(ΓG) = G.

Moreover, ΓG can be constructed effectively, given generators of G.

Kharlampovich, Miasnikov, Remeslennikov, Serbin showed that
U -folded graphs can be employed to solve

• Subgroup Membership Problem,

• Intersection Problem,

• Conjugacy Problem,

• other algorithmic problems

Now we use this technique to solve Finite Index Problem.
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Finite index conditions

Stallings graphs provide a simple way to decide if a subgroup H of
a free group G is of finite index. The algorithm was basically to
check if label of any loop in the Stallings graph for G could be read
as label of a path in the Stallings graph for H.
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G = 〈x, y〉
H1 = 〈x2, y2, xy〉, |G : H1| = 2 < ∞
H2 = 〈yx, y−1x〉, |G : H2| = ∞
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Question

Is there a similar test for finitely generated subgroup of FZ[t] given
by U -folded graphs?
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Straightforward translation of the algorithm to U -graphs does not
work:

u

x x
y

ut
ut

z1

z2

1

z1

z2
u2t+1

u

x x
y

ut

ut
z1

z2

1 G H

u = xyx, G = 〈a = xutz1u
txy, b = xutz2u

txy〉, H = 〈a2, b2, ab〉,
|G : H| = 2 < ∞
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In what follows, we denote a limit group by G and its subgroup by
H. We assume they are given by U -folded graphs Γ and ∆
respectively.
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Observation

To conclude that index is infinite, it is not enough to find a loop in
Γ, whose label cannot be read in ∆.

It also matters if one can or cannot produce infinite amount of
cosets once such a loop is found.
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In case when G is free and is Γ is a bouquet of circles, that was
automatic.

x

xy

y

y

G

H2

We cannot read x in H2, so we cannot read any xw ∈ G, w a word
that does not start with x−1.
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Since in a U -folded graph reading a label is equivalent to reading
its normal form, it is enough to examine paths whose labels are
normal forms, or S-paths.

Theorem

Let G be a f.g. subgroup of FZ[t] and f.g. H ≤ G. Then the
following are equivalent:

(1) |G : H| < ∞,
(2) there exists a finite U -folded graph ∆ with a vertex v

such that H = L(∆, v) and for every g ∈ G there exists
a path p in ∆ such that o(p) = v, µ(p) = π(g).
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However, this theorem depends on a particular graph ∆.

To make the test work effectively given arbitrary graph
representing Γ, we investigate infinite S-paths.

Theorem

Given G ≥ H defined by Γ and ∆, the following statements are
equivalent:

(1) [G : H] < ∞,
(3) for each infinite S-path in Γ, its label is also readable in

∆.
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Idea behind the theorem

Suppose there is a finite S-path p in Γ that is not doubled in ∆.
Whether we can use it to produce infinitely many cosets, depends
on whether or not we can extend it into an infinite S-path.

If we can, index is infinite;

if we cannot extend any non-doubled finite S-path, then all possible
non-doubled pieces occur in the “ends” of these paths. It is
possible to put a bound on how long the “end” can be, explaining
why we can cover all G with a finite number of cosets.
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This theorem doesn’t provide an effective criterion. To make the
theorem effective, we need to restrict the test to checking a finite
number of paths.

Definition

An infinite S-path p is called periodic if p = p1(p2)∞.
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One can prove an analogue of Pumping Lemma stating that
doubling all infinite S-paths is equivalent to doubling all periodic
S-paths of a bounded “content”.

Content is, roughly speaking, number of symbols in µ(p1) + µ(p2).

Theorem

Given G ≥ H defined by U -folded graphs Γ and ∆, one can
compute a number N such that the following statements are
equivalent:

(1) [G : H] < ∞,
(3) for each infinite S-path (in particular, each periodic

S-path) in Γ, its label is also readable in ∆,
(4) for each periodic S-path of content ≤ N in Γ, its label

is also readable in ∆.
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One can show that condition (4) can be checked effectively.

Theorem

Suppose H ≤ G ≤ FZ[t], G,H f.g. Then there is an algorithm
deciding whether [G : H] < ∞.

These results have a number of corollaries.
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Corollary 1 (Greenberg-Stallings Theorem)

Let G1, G2 be finitely generated subgroups of FZ[t]. If H ≤ G1 ∩G2

is finitely generated and |G1 : H| < ∞, |G2 : H| < ∞ then
|〈G1, G2〉 : H| < ∞.

For example, H = G1 ∩G2 is finitely generated if G1, G2 are, as
shown by Kharlampovich, Myasnikov, Remeslennikov, and Serbin
(2004).
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Commensurator

Let H be a subgroup of a group G. The commensurator
CommG(H) of H in G is defined as

CommG(H) = {g ∈ G | |H : H∩gHg−1| < ∞ and |gHg−1 : H∩gHg−1| < ∞}.

Combining decidability of finite index with results of
Kharlampovich, Myasnikov, Remeslennikov and Serbin (2004), we
immediately obtain the following
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Corollary 2

Let H ≤ G be two noncommutative f.g. subgroups of FZ[t]. Then
CommG(H) is finitely generated, and its generating set can be
found effectively.
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Analogue of Greenberg-Stallings Theorem allows to prove

Corollary 3

Let H ≤ G be two noncommutative f.g. subgroups of FZ[t]. Then
|CommG(H) : H| < ∞.

Remark

This theorem might not hold if H is commutative. Obvious
example is G = 〈u, ut〉, H = 〈u〉. One can add an x to G to make it
noncommutative: G = 〈x, u, ut〉, H = 〈u〉.
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Corollary 4 (Schreier-like bound)

Let G be a f.g. subgroup of FZ[t] and let H ≤ G be its f.g.
non-abelian subgroup. Then there exists a natural number N(H)
such that for every K ≤ G containing H, if |K : H| < ∞ then
|K : H| < N(H).
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