Knapsack problems in hyperbolic groups

Andrey Nikolaev (Stevens Institute)

GAGTA, May 2013

Based on joint work with A.Miasnikov and A.Ushakov

Basic idea:

Take a classical algorithmic problem from computer science (traveling salesman, Post correspondence, knapsack, ...) and translate it into group-theoretic setting.

The classical subset sum problem (SSP):

Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

 $\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

SSP for a group G:

Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{arepsilon_1}\dots g_k^{arepsilon_k}=g$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

Elements in G are given as words in a fixed set of generators of G_{1} .

Andrey Nikolaev (Stevens Institute) Knapsack problems in hyperbolic groups

The classical subset sum problem (SSP):

Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

 $\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

SSP for a group *G*:

Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{arepsilon_1}\dots g_k^{arepsilon_k}=g_k$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

Elements in G are given as words in a fixed set of generators of G.

The classical subset sum problem (SSP):

Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

 $\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

SSP for a group *G*:

Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{\varepsilon_1}\dots g_k^{\varepsilon_k}=g$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

Elements in G are given as words in a fixed set of generators of G.

In the classical (commutative) case, **SSP** is pseudo-polynomial.

Classical SSP

- If input is given in unary, **SSP** is in **P**,
- $\bullet\,$ if input is given in binary, \boldsymbol{SSP} is $\boldsymbol{NP}\text{-complete}.$

The situation is quite more involved in non-commutative case.

直 ト イヨ ト イヨ ト

In the classical (commutative) case, **SSP** is pseudo-polynomial.

Classical SSP

- If input is given in unary, SSP is in P,
- if input is given in binary, **SSP** is **NP**-complete.

The situation is quite more involved in non-commutative case.

• • = • • = •

Non-commutative discrete optimization

Group	Complexity	Why
Nilpotent	Р	Poly growth
$\mathbb{Z} \wr \mathbb{Z}$	NP-complete	ZOE
Free metabelian	NP -complete	$\mathbb{Z}\wr\mathbb{Z}$
Thompson's F	NP-complete	$\mathbb{Z}\wr\mathbb{Z}$
BS(1,p)	NP-complete	Binary $SSP(\mathbb{Z})$
Hyperbolic	Р	Later in the talk

Note that the **NP**-completeness is despite unary input.

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-commutative discrete optimization

Group	Complexity	Why
Nilpotent	Р	Poly growth
$\mathbb{Z} \wr \mathbb{Z}$	NP-complete	ZOE
Free metabelian	NP -complete	$\mathbb{Z}\wr\mathbb{Z}$
Thompson's F	NP -complete	$\mathbb{Z}\wr\mathbb{Z}$
BS(1,p)	NP-complete	Binary $SSP(\mathbb{Z})$
Hyperbolic	Р	Later in the talk

Note that the **NP**-completeness is despite unary input.

同下 イヨト イヨト

SSP subset sum,

KP knapsack,

SMP submonoid membership.

Variations of **SSP**, **KP**, **SMP**:

- search,
- optimization,
- bounded.

伺 と く ヨ と く ヨ と

SSP subset sum,

KP knapsack,

SMP submonoid membership.

Variations of SSP, KP, SMP:

- search,
- optimization,
- bounded.

向 ト イヨ ト イヨ ト

SSP subset sum,

KP knapsack,

SMP submonoid membership.

Variations of SSP, KP, SMP:

- search,
- optimization,
- bounded.

SSP subset sum,

KP knapsack,

SMP submonoid membership.

Variations of SSP, KP, SMP:

- search,
- optimization,
- bounded.

The knapsack problem (KP) for G:

Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{\varepsilon_1}\dots g_k^{\varepsilon_k}=g$$

for some non-negative integers $\varepsilon_1, \ldots, \varepsilon_k$.

There are minor variations of this problem, for instance, integer **KP**, when ε_i are arbitrary integers. They are all similar, we omit them here.

The subset sum problem sometimes is called 0 - 1 knapsack.

< 同 > < 回 > < 回 >

The knapsack problem (KP) for G:

Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{\varepsilon_1}\dots g_k^{\varepsilon_k}=g$$

for some non-negative integers $\varepsilon_1, \ldots, \varepsilon_k$.

There are minor variations of this problem, for instance, integer **KP**, when ε_i are arbitrary integers. They are all similar, we omit them here.

The subset sum problem sometimes is called 0 - 1 knapsack.

< 回 > < 回 > < 回 >

The knapsack problems in groups is closely related to the big powers method, which appeared long before any complexity considerations (Baumslag, 1962).

伺 と く ヨ と く ヨ と

Submonoid membership problem (SMP):

Given a finite set $A = \{g_1, \ldots, g_k, g\}$ of elements of G decide if g belongs to the submonoid generated by A, i.e., if $g = g_{i_1}, \ldots, g_{i_s}$ for some $g_{i_i} \in A$.

If the set A is closed under inversion then we have the subgroup membership problem in G.

伺 と く ヨ と く ヨ と

It makes sense to consider the bounded versions of **KP** and **SMP**, they are always decidable in groups with decidable word problem.

The bounded knapsack problem (BKP) for G:

decide, when given $g_1, \ldots, g_k, g \in G$ and $1^m \in \mathbb{N}$, if $g =_G g_1^{\varepsilon_1} \ldots g_k^{\varepsilon_k}$ for some $\varepsilon_i \in \{0, 1, \ldots, m\}$.

BKP is **P**-time equivalent to **SSP** in *G*.

伺 ト イ ヨ ト イ ヨ ト

It makes sense to consider the bounded versions of \mathbf{KP} and \mathbf{SMP} , they are always decidable in groups with decidable word problem.

The bounded knapsack problem (BKP) for G:

decide, when given $g_1, \ldots, g_k, g \in G$ and $1^m \in \mathbb{N}$, if $g =_G g_1^{\varepsilon_1} \ldots g_k^{\varepsilon_k}$ for some $\varepsilon_i \in \{0, 1, \ldots, m\}$.

BKP is **P**-time equivalent to **SSP** in *G*.

伺 ト イ ヨ ト イ ヨ ト

Bounded submonoid membership problem (BSMP) for G:

Given $g_1, \ldots, g_k, g \in G$ and $1^m \in \mathbb{N}$ (in unary) decide if g is equal in G to a product of the form $g = g_{i_1} \cdots g_{i_s}$, where $g_{i_1}, \ldots, g_{i_s} \in \{g_1, \ldots, g_k\}$ and $s \leq m$.

同下 イヨト イヨト ニヨ

Theorem

Let G be a hyperbolic group then all the problems SSP(G), KP(G), BSMP(G), as well as their search and optimization versions are in **P**.

Draw equality

$$g_1^{\varepsilon_1}\dots g_k^{\varepsilon_k}=g$$

in the Cayley graph. If one of ε_i 's is large, we can cut some powers out.

高 と く ヨ と く ヨ と

$\mathbf{KP}(G) \in \mathbf{P}$, sketch of proof

イロン イロン イヨン イヨン

æ

$\mathbf{KP}(G) \in \mathbf{P}$, sketch of proof

Now we only need to solve SSP(G).

Image: A image: A

$\mathbf{KP}(G) \in \mathbf{P}$, sketch of proof

Now we only need to solve SSP(G).

.⊒ . ►

 w_1, w_2, \ldots, w_k, w is a positive instance of **SSP** iff a word equal to 1 in *G* is readable in the following graph:

To recognize whether a word equal to 1 in G is readable, we perform two operations, so called *R*-completion and folding.

For a symmetrized presentation $\langle X | R \rangle$ and a graph Γ labeled by X, at each vertex of Γ we add a loop labeled by r, for each $r \in R$:

伺 ト く ヨ ト く ヨ ト

$SSP(G) \in P$, sketch of proof

For each "foldable" pair of consecutive edges we add a new edge:

"Foldable" pairs:

$s_1 \xrightarrow{x} s_2 \xrightarrow{x^{-1}} s_3$	$s_1 \stackrel{arepsilon}{ ightarrow} s_3$
$s_1 \stackrel{x}{ ightarrow} s_2 \stackrel{arepsilon}{ ightarrow} s_3$	$s_1 \stackrel{\scriptscriptstyle X}{ ightarrow} s_3$
$s_1 \stackrel{\varepsilon}{ ightarrow} s_2 \stackrel{x}{ ightarrow} s_3$	$s_1 \stackrel{\scriptscriptstyle X}{ ightarrow} s_3$
$s_1 \stackrel{\varepsilon}{ ightarrow} s_2 \stackrel{\varepsilon}{ ightarrow} s_3$	$s_1 \stackrel{\varepsilon}{ ightarrow} s_3.$

One application of completion and folding corresponds to "peeling off" one layer of cells in van Kampen diagram:

A 3 b

Lemma

Let $\langle X \mid R \rangle$ be a finite presentation of a hyperbolic group G. Let Γ be an acyclic automaton over $X \cup X^{-1}$ with at most m nontrivially labeled edges. Then $1 \in \overline{L(\Gamma)}$ if and only if $\mathcal{F}(\mathcal{C}^{O(\log m)}(\Gamma))$ contains an edge $\alpha \xrightarrow{\varepsilon} \omega$.

Proof: in a hyperbolic group *G*, the depth of van Kampen diagrams is *logarithmic* in perimeter (Druţu 2001).

イロト イポト イヨト イヨト

Lemma

Let $\langle X \mid R \rangle$ be a finite presentation of a hyperbolic group G. Let Γ be an acyclic automaton over $X \cup X^{-1}$ with at most m nontrivially labeled edges. Then $1 \in \overline{L(\Gamma)}$ if and only if $\mathcal{F}(\mathcal{C}^{O(\log m)}(\Gamma))$ contains an edge $\alpha \xrightarrow{\varepsilon} \omega$.

Proof: in a hyperbolic group G, the depth of van Kampen diagrams is *logarithmic* in perimeter (Druţu 2001).

To solve **SSP** in a hyperbolic group *G*, given words w_1, w_2, \ldots, w_n , we construct the graph Γ as above

伺 ト く ヨ ト く ヨ ト

$SSP(G) \in P$, the algorithm

and apply $O(\log(|w| + \sum |w_i|))$ *R*-completions and then the (non-Stallings) folding to construct the graph $\mathcal{F}(\mathcal{C}^{O(\log m)}(\Gamma))$:

Figure : Graph $\mathcal{F}(\mathcal{C}^{O(\log(|w|+\sum |w_i|))}(\Gamma))$

and check whether the resulting graph contains the edge $\alpha \xrightarrow{\varepsilon} \omega$.

- 4 同 6 4 日 6 4 日 6

$SSP(G) \in P$, the algorithm

and apply $O(\log(|w| + \sum |w_i|))$ *R*-completions and then the (non-Stallings) folding to construct the graph $\mathcal{F}(\mathcal{C}^{O(\log m)}(\Gamma))$:

Figure : Graph $\mathcal{F}(\mathcal{C}^{O(\log(|w|+\sum |w_i|))}(\Gamma))$

and check whether the resulting graph contains the edge $\alpha \xrightarrow{\varepsilon} \omega$.

The same argument can be used to show that search and optimization variations of **SSP**, **KP** are in **P** for a hyperbolic group G.

The same argument can be also used to show that BSMP(G) (together with its search and optimization variations) for a hyperbolic group is in **P**.

Surprise

The bounded **SMP** is polynomial time decidable in any hyperbolic group, while there are hyperbolic groups with undecidable **SMP**.

(4 同) (4 日) (4 日)

The same argument can be also used to show that BSMP(G) (together with its search and optimization variations) for a hyperbolic group is in **P**.

Surprise

The bounded **SMP** is polynomial time decidable in any hyperbolic group, while there are hyperbolic groups with undecidable **SMP**.

< 同 > < 三 > < 三 >

The same argument can be also used to show that BSMP(G) (together with its search and optimization variations) for a hyperbolic group is in **P**.

Surprise

The bounded **SMP** is polynomial time decidable in any hyperbolic group, while there are hyperbolic groups with undecidable **SMP**.

・ 戸 ト ・ ヨ ト ・ ヨ ト