
Logspace and compressed-word
computations in nilpotent groups

Andrey Nikolaev

Stevens Institute of Technology

New York
March 13, 2015

Joint work with J. Macdonald, A. Miasnikov, S. Vassileva

History

Approaches to algorithmic problems in nilpotent groups:
Enumerative algorithms via residual finiteness.
No reasonable complexity estimates (until recently).
Embedding G ↪→ UT (n,Z).
Only for torsion-free case. Does not work well for all
problems.
Normal forms via polycyclic/Mal’cev bases.
Reasonable algorithms, no specific complexity estimates in
most cases.

History

Approaches to algorithmic problems in nilpotent groups:
Enumerative algorithms via residual finiteness.
No reasonable complexity estimates (until recently).
Embedding G ↪→ UT (n,Z).
Only for torsion-free case. Does not work well for all
problems.
Normal forms via polycyclic/Mal’cev bases.
Reasonable algorithms, no specific complexity estimates in
most cases.

History

Approaches to algorithmic problems in nilpotent groups:
Enumerative algorithms via residual finiteness.
No reasonable complexity estimates (until recently).
Embedding G ↪→ UT (n,Z).
Only for torsion-free case. Does not work well for all
problems.
Normal forms via polycyclic/Mal’cev bases.
Reasonable algorithms, no specific complexity estimates in
most cases.

History

Approaches to algorithmic problems in nilpotent groups:
Enumerative algorithms via residual finiteness.
No reasonable complexity estimates (until recently).
Embedding G ↪→ UT (n,Z).
Only for torsion-free case. Does not work well for all
problems.
Normal forms via polycyclic/Mal’cev bases.
Reasonable algorithms, no specific complexity estimates in
most cases.

History

Approaches to algorithmic problems in nilpotent groups:
Enumerative algorithms via residual finiteness.
No reasonable complexity estimates (until recently).
Embedding G ↪→ UT (n,Z).
Only for torsion-free case. Does not work well for all
problems.
Normal forms via polycyclic/Mal’cev bases.
Reasonable algorithms, no specific complexity estimates in
most cases.

History

Approaches to algorithmic problems in nilpotent groups:
Enumerative algorithms via residual finiteness.
No reasonable complexity estimates (until recently).
Embedding G ↪→ UT (n,Z).
Only for torsion-free case. Does not work well for all
problems.
Normal forms via polycyclic/Mal’cev bases.
Reasonable algorithms, no specific complexity estimates in
most cases.

History

Approaches to algorithmic problems in nilpotent groups:
Enumerative algorithms via residual finiteness.
No reasonable complexity estimates (until recently).
Embedding G ↪→ UT (n,Z).
Only for torsion-free case. Does not work well for all
problems.
Normal forms via polycyclic/Mal’cev bases.
Reasonable algorithms, no specific complexity estimates in
most cases.

The problems

For G finitely generated nilpotent group.

(I) Compute Mal’cev normal form.

(II) Membership problem.

(III) Compute the kernel of a homomorphism.
(IV) Compute subgroup presentations.

(V) Compute the centralizer of an element.

(VI) Conjugacy (search) problem.

The results

1 Problems (I)-(VI) are decidable
in space O(log L), and simultaneously
in time O(L log3 L).

2 We give polynomial bounds on the length of outputs.
3 Compressed-word versions of problems (I)-(VI) are

decidable in polynomial time.

The results

1 Problems (I)-(VI) are decidable
in space O(log L), and simultaneously
in time O(L log3 L).

2 We give polynomial bounds on the length of outputs.
3 Compressed-word versions of problems (I)-(VI) are

decidable in polynomial time.

The results

1 Problems (I)-(VI) are decidable
in space O(log L), and simultaneously
in time O(L log3 L).

2 We give polynomial bounds on the length of outputs.
3 Compressed-word versions of problems (I)-(VI) are

decidable in polynomial time.

Log-space transducers

input tape read only

work tape read/write

output tape write only

Logspace⇒ P-time.

Input length = n.
Number of cells on work tape ≤ k log n.
Configurations cannot be repeated.
Total number of configurations ∼ 2k log n ∼ nk

Therefore, O(nk) time.

P-time ?⇒ logspace: open problem.

Compressed words

Σ is a set of symbols, called terminal symbols with ε ∈ Σ.
A straight-line program or compressed word A over Σ
consists of

(A,<) – ordered finite set, called the set of non-terminal
symbols,
exactly one production rule for each A ∈ A of the form

A → BC where B,C ∈ A and B,C < A or
A → x where x ∈ Σ.

The root is the greatest non-terminal.
eval(A) is the word in Σ∗ obtained by starting with the root
non-terminal and successively replacing every
non-terminal symbol with the right-hand side of its
production rule.
The size, |A|, of A is the number of non-terminal symbols.

Example of compression

Consider the program B over {x} with production rules

Bn → Bn−1Bn−1,
Bn−1 → Bn−2Bn−2,
. . .
B1 → B0B0,
B0 → x .

Unravel, eval(B2) = x4 and eval(B) = x2n
.

Size of B is n + 1, size of eval(B) is 2n.

Nilpotent group

A group G is called nilpotent if it has a central series, i.e. a
normal series

G = G1 BG2 B . . .BGc BGc+1 = 1 (1)

such that [G,Gi] ≤ Gi+1 for all i = 1, . . . , c.

Mal’cev basis

Gi/Gi+1 is abelian.
Pick ai1, . . . ,aimi a good basis for Gi/Gi+1.
A = {a11,a12, . . . ,acmc} is a polycyclic generating set for G.
Relabel A as {a1, . . . ,am} for convenience.
A is a Mal’cev basis associated to the central series (1).

Mal’cev basis

Gi/Gi+1 is abelian.
Pick ai1, . . . ,aimi a good basis for Gi/Gi+1.
A = {a11,a12, . . . ,acmc} is a polycyclic generating set for G.
Relabel A as {a1, . . . ,am} for convenience.
A is a Mal’cev basis associated to the central series (1).

Normal forms and word problem

Mal’cev normal forms

Let A = {a1, . . . ,am} be a Mal’cev basis for G.
“Collect to the left” relations (i < j) and “Torsion” relations

ajai = aiaj · a
βj+1
j+1 · · · a

βm
m aτi

i = aβi+1
i+1 · · · a

βm
m

allow to write every element g ∈ G uniquely as

g = aα1
1 . . . aαm

m ,

with appropriate αi ∈ Z.

Coord(g) = (α1, . . . , αm) is the coordinate tuple of g.

aα1
1 . . . aαm

m is the (Mal’cev) normal form of g.
Denote αi = Coordi(g).

Mal’cev normal forms

Let A = {a1, . . . ,am} be a Mal’cev basis for G.
“Collect to the left” relations (i < j) and “Torsion” relations

ajai = aiaj · a
βj+1
j+1 · · · a

βm
m aτi

i = aβi+1
i+1 · · · a

βm
m

allow to write every element g ∈ G uniquely as

g = aα1
1 . . . aαm

m ,

with appropriate αi ∈ Z.

Coord(g) = (α1, . . . , αm) is the coordinate tuple of g.

aα1
1 . . . aαm

m is the (Mal’cev) normal form of g.
Denote αi = Coordi(g).

Mal’cev normal forms

Let A = {a1, . . . ,am} be a Mal’cev basis for G.
“Collect to the left” relations (i < j) and “Torsion” relations

ajai = aiaj · a
βj+1
j+1 · · · a

βm
m aτi

i = aβi+1
i+1 · · · a

βm
m

allow to write every element g ∈ G uniquely as

g = aα1
1 . . . aαm

m ,

with appropriate αi ∈ Z.

Coord(g) = (α1, . . . , αm) is the coordinate tuple of g.

aα1
1 . . . aαm

m is the (Mal’cev) normal form of g.
Denote αi = Coordi(g).

Working with Mal’cev coordinates

Let {a1, . . . ,am} be a Mal’cev basis for G. Then there are
quasi-polynomials (compositions of polynomials and division
with a remainder functions)

p1, . . . ,pm,q1, . . . ,qm

such that for Coord(g) = (γ1, . . . , γm) and
Coord(h) = (δ1, . . . , δm),

(i) Coordi(gh) = pi(γ1, . . . , γm, δ1, . . . , δm),
(ii) Coordi(g l) = qi(γ1, . . . , γm, l), and

(iii) if Coord(g) = (0, . . . ,0, γk , . . . , γm), then
(a) ∀i < k , Coordi (gh) = δi and Coordk (gh) = γk + δk
(b) ∀i < k , Coordi (g l) = 0 and Coordk (g l) = lγk .

Example. (a1a2a3a4a5) · (a2
3a4a5) = a1a2a3

3a?
4a?

5.

Length bound for Mal’cev normal forms

Theorem
Let G be nilpotent group of class c with a Mal’cev basis A.
Then, for any word w over A,

|Coordi(w)| ≤ κ|w |c

where κ is a constant that depends only on the presentation of
G.

|Coordi(w)| is the absolute value of the integer Coordi(w);
|w | is the word length of w in terms of A.
Number of bits of Coord(w) is ∼ log |w | (so can store
Coord(w) in memory).

Remark on nilpotent vs. polycyclic

Proposition
Let H be a polycyclic group with polycyclic generators
A = {a1, . . . ,am}. Suppose there is a polynomial P(n) such
that if w is a word over A±1 of length n then

|Coordi(w)| ≤ P(n)

for all i = 1,2, . . . ,m. Then H is virtually nilpotent.

Therefore, the results cannot be immediately extended to
polycyclic groups.

Usual vs. Mal’cev encoding

Consider Z = 〈a〉.
Encode a word w as w = aaaaaaaaa, so |w | = 9.
Encode a word w as w = a9, or, w = 9. So
‖w‖ = dlog2 9e = 4.

Similar with nilpotent groups. Let G have Mal’cev basis
a1, . . . ,am.

Encode a word w as w = ai1ai2 . . . ain . So |w | = n.
This can be rewritten as w = a1 . . . a1a2 . . . a2 · · · am . . . am.
Here |w | ∼ nc .
So w = aα1

1 . . . aαm
m with α1, . . . αm ∈ Z.

Encode w = (α1, . . . , αm) ∈ Zm.
Here ‖w‖ ∼ O(log2 n).

What about compressed words?

Usual vs. Mal’cev encoding

Consider Z = 〈a〉.
Encode a word w as w = aaaaaaaaa, so |w | = 9.
Encode a word w as w = a9, or, w = 9. So
‖w‖ = dlog2 9e = 4.

Similar with nilpotent groups. Let G have Mal’cev basis
a1, . . . ,am.

Encode a word w as w = ai1ai2 . . . ain . So |w | = n.
This can be rewritten as w = a1 . . . a1a2 . . . a2 · · · am . . . am.
Here |w | ∼ nc .
So w = aα1

1 . . . aαm
m with α1, . . . αm ∈ Z.

Encode w = (α1, . . . , αm) ∈ Zm.
Here ‖w‖ ∼ O(log2 n).

What about compressed words?

Working with compressed words

The strategy to do the compressed word version of problems is
as follows.

Convert the input SLPs to Mal’cev coordinates.
Apply algorithms which work with Mal’cev coordinates in
binary.
Convert the output coordinate vectors to SLPs.

What about the size?
Let L be the length of the SLP A.
The length of eval(A) is ∼ 2L.
Each Mal’cev coordinate of eval(A) is ∼ 2cL.
In binary, coordinates are O(L) bits long.

Coordinate tuple←→ SLP.

Theorem
Let G be a f.g. nilpotent group with Mal’cev generating set A.

There is an algorithm that, given a straight-line program A

over A±, computes the coordinate vector Coord(eval(A)).
The algorithm runs in time O(L3), where L = |A|.
Each coordinate of eval(A) is expressed as a O(L)-bit
number.

Computation of normal forms

Theorem
For every finitely generated nilpotent group G, the Mal’cev
normal form of a word of length L is computable in

space O(log(L)) and, simultaneously,
time O(L · log2 L).

Proof

The algorithm – compute coordinates element by element.
Denote w = x1 · · · xL.
Keep an array γ = (γ1, . . . , γm) of coordinates in memory.
At the end of step j , γ holds the coordinates of x1 . . . xj .
For 0 ≤ j < L, compute Coord(x1 · · · xjxj+1) using the pi
with

Coord(x1 · · · xj) = (γ1, . . . , γm) and
Coord(xj+1) = (0, . . . ,0,±1,0, . . . ,0).

Complexity
|x1 · · · xj | ≤ L, so γ ≤ κLc can be stored in logspace.
m(L− 1) total evaluations of the polynomials pi .
Each evaluation of pi requires arithmetic with O(log L)-bit
numbers, so can be performed in required space and time.

Proof

The algorithm – compute coordinates element by element.
Denote w = x1 · · · xL.
Keep an array γ = (γ1, . . . , γm) of coordinates in memory.
At the end of step j , γ holds the coordinates of x1 . . . xj .
For 0 ≤ j < L, compute Coord(x1 · · · xjxj+1) using the pi
with

Coord(x1 · · · xj) = (γ1, . . . , γm) and
Coord(xj+1) = (0, . . . ,0,±1,0, . . . ,0).

Complexity
|x1 · · · xj | ≤ L, so γ ≤ κLc can be stored in logspace.
m(L− 1) total evaluations of the polynomials pi .
Each evaluation of pi requires arithmetic with O(log L)-bit
numbers, so can be performed in required space and time.

Proof

The algorithm – compute coordinates element by element.
Denote w = x1 · · · xL.
Keep an array γ = (γ1, . . . , γm) of coordinates in memory.
At the end of step j , γ holds the coordinates of x1 . . . xj .
For 0 ≤ j < L, compute Coord(x1 · · · xjxj+1) using the pi
with

Coord(x1 · · · xj) = (γ1, . . . , γm) and
Coord(xj+1) = (0, . . . ,0,±1,0, . . . ,0).

Complexity
|x1 · · · xj | ≤ L, so γ ≤ κLc can be stored in logspace.
m(L− 1) total evaluations of the polynomials pi .
Each evaluation of pi requires arithmetic with O(log L)-bit
numbers, so can be performed in required space and time.

Compressed word problem

Corollary
The compressed word problem in every finitely generated
nilpotent group is decidable in (sub)cubic time.

Note. Haubold, Lohrey, Mathissen had already observed that
the compressed word problem is decidable in polynomial time
via embedding in UTn(Z).

Subgroup membership and
matrix reduction

Matrix notation

Let G have Mal’cev basis {a1, . . . ,am},
subgroup H ≤ G be given as H = 〈h1, . . . ,hn〉.


h1 = aα11

1 · · · aα1m
m

...
...

hn = aα1n
1 · · · aαnm

m

!

 α11 · · · α1m
...

. . .
...

α1n · · · αnm

 = A.

πi is the column of the first non-zero entry (‘pivot’) in row i .
(h1, . . . ,hn) is in standard form if the matrix of coordinates
A is in row-echelon form and entries above pivots are
reduced.
(h1, . . . ,hn) is full if for each 1 ≤ i ≤ m, the subgroup
H ∩ 〈ai ,ai+1, . . . ,am〉 is generated by {hj | πj ≥ i}.

Matrix notation

Let G have Mal’cev basis {a1, . . . ,am},
subgroup H ≤ G be given as H = 〈h1, . . . ,hn〉.


h1 = aα11

1 · · · aα1m
m

...
...

hn = aα1n
1 · · · aαnm

m

!

 α11 · · · α1m
...

. . .
...

α1n · · · αnm

 = A.

πi is the column of the first non-zero entry (‘pivot’) in row i .
(h1, . . . ,hn) is in standard form if the matrix of coordinates
A is in row-echelon form and entries above pivots are
reduced.
(h1, . . . ,hn) is full if for each 1 ≤ i ≤ m, the subgroup
H ∩ 〈ai ,ai+1, . . . ,am〉 is generated by {hj | πj ≥ i}.

Uniqueness of standard form

Lemma [Sims]
Let H ≤ G. There is a unique full sequence U = (h1, . . . ,hs)
that generates H. Further,

H = {hβ1
1 · · · h

βs
s |βi ∈ Z}

and s ≤ m.

Goal: convert (h1, . . . ,hn) to a full sequence in standard form
generating the same subgroup.

Uniqueness of standard form

Lemma [Sims]
Let H ≤ G. There is a unique full sequence U = (h1, . . . ,hs)
that generates H. Further,

H = {hβ1
1 · · · h

βs
s |βi ∈ Z}

and s ≤ m.

Goal: convert (h1, . . . ,hn) to a full sequence in standard form
generating the same subgroup.

Matrix operations

Define three operations on tuples (h1, . . . ,hn) of elements of G
by their corresponding operations on the associated matrix are:

(1) swap row i with row j ;
(2) replace row i by Coord(hihN

j);
(3) add or remove a trivial row.
All three of these operations preserve the subgroup
〈h1, . . . ,hn〉.

Row-reducing the matrix

Let A be an n ×m matrix. Similar to row-reducing a matrix over
Z (in fact, works same as over Z in the first column).

Identify pivot.
Use the gcd of the pivot column to clear out the column.
Number of operations ∼ n.
Repeat for each column (m times).
Total number of operations ∼ mn.

Magnitude of entries may increase

There is an issue:
When using the operation hi → hihN

j , the magnitude of the
largest entry may increase from M to Md , d = degree of
multiplication polynomials.
Greatest entry could be size ∼ Mdmn

.

Length bound for reduced matrix

Lemma
Let h1, . . . ,hn ∈ G and let R be the standard form of the
associated matrix of coordinates. Then every entry, αij , of R is
bounded by

|αij | ≤ CLK ,

where L = |h1|+ · · ·+ |hn| is the total length of the given
elements, and K and C are constants depending on G.

Computing standard form

Lemma
There is an algorithm that, given h1, . . . ,hn ∈ G, computes the
standard form of the matrix of coordinates in space logarithmic
in L =

∑n
i=1 |hi | and in time O(L log3 L).

Start with m ×m matrix (constant size).
Reduce to standard form.
Add a row and reduce (still constant size).
Repeat until all n rows accounted for.
Size never goes beyond ∼ 2m ×m. Entries are bounded.
The size of the reduced matrix is m ×m.

Computing standard form

Lemma
There is an algorithm that, given h1, . . . ,hn ∈ G, computes the
standard form of the matrix of coordinates in space logarithmic
in L =

∑n
i=1 |hi | and in time O(L log3 L).

Start with m ×m matrix (constant size).
Reduce to standard form.
Add a row and reduce (still constant size).
Repeat until all n rows accounted for.
Size never goes beyond ∼ 2m ×m. Entries are bounded.
The size of the reduced matrix is m ×m.

Computing standard form

Lemma
There is an algorithm that, given h1, . . . ,hn ∈ G, computes the
standard form of the matrix of coordinates in space logarithmic
in L =

∑n
i=1 |hi | and in time O(L log3 L).

Start with m ×m matrix (constant size).
Reduce to standard form.
Add a row and reduce (still constant size).
Repeat until all n rows accounted for.
Size never goes beyond ∼ 2m ×m. Entries are bounded.
The size of the reduced matrix is m ×m.

Computing standard form

Lemma
There is an algorithm that, given h1, . . . ,hn ∈ G, computes the
standard form of the matrix of coordinates in space logarithmic
in L =

∑n
i=1 |hi | and in time O(L log3 L).

Start with m ×m matrix (constant size).
Reduce to standard form.
Add a row and reduce (still constant size).
Repeat until all n rows accounted for.
Size never goes beyond ∼ 2m ×m. Entries are bounded.
The size of the reduced matrix is m ×m.

Computing standard form

Lemma
There is an algorithm that, given h1, . . . ,hn ∈ G, computes the
standard form of the matrix of coordinates in space logarithmic
in L =

∑n
i=1 |hi | and in time O(L log3 L).

Start with m ×m matrix (constant size).
Reduce to standard form.
Add a row and reduce (still constant size).
Repeat until all n rows accounted for.
Size never goes beyond ∼ 2m ×m. Entries are bounded.
The size of the reduced matrix is m ×m.

Computing standard form

Lemma
There is an algorithm that, given h1, . . . ,hn ∈ G, computes the
standard form of the matrix of coordinates in space logarithmic
in L =

∑n
i=1 |hi | and in time O(L log3 L).

Start with m ×m matrix (constant size).
Reduce to standard form.
Add a row and reduce (still constant size).
Repeat until all n rows accounted for.
Size never goes beyond ∼ 2m ×m. Entries are bounded.
The size of the reduced matrix is m ×m.

Computing standard form

Lemma
There is an algorithm that, given h1, . . . ,hn ∈ G, computes the
standard form of the matrix of coordinates in space logarithmic
in L =

∑n
i=1 |hi | and in time O(L log3 L).

Start with m ×m matrix (constant size).
Reduce to standard form.
Add a row and reduce (still constant size).
Repeat until all n rows accounted for.
Size never goes beyond ∼ 2m ×m. Entries are bounded.
The size of the reduced matrix is m ×m.

Membership problem

Theorem
Let G be a finitely generated nilpotent group.
Let h1, . . . ,hn ∈ G and h ∈ G.
Denote L = |h|+ |h1|+ · · ·+ |hn| and H = 〈h1, . . . ,hn〉.

There is an algorithm that, decides whether or not h ∈ H.
The algorithm runs in space O(log L) and time O(L log3 L).
If h ∈ H the algorithm returns the unique expression
h = gγ1

1 · · · g
γs
s , where (g1, . . . ,gs) is the unique full

standard-form sequence for H, and the length of h is
bounded by a degree 2m(6c3)m polynomial function of L.

Proof

(h1, . . . ,hn) (g1, . . . ,gs).
Denote Coord(h) = (β1, . . . , βm).

If βl 6= 0 for some 1 ≤ l < π1, then h /∈ H.
If Coordπ1(g1) - βπ1 , then h /∈ H.
Else, let

γ1 =
βπ1

Coordπ1(g1)
h′ = g−γ1

1 h.

Repeat, replacing h by h′ and (g1, . . . ,gs) by (g2, . . . ,gs).

Proof

(h1, . . . ,hn) (g1, . . . ,gs).
Denote Coord(h) = (β1, . . . , βm).

If βl 6= 0 for some 1 ≤ l < π1, then h /∈ H.
If Coordπ1(g1) - βπ1 , then h /∈ H.
Else, let

γ1 =
βπ1

Coordπ1(g1)
h′ = g−γ1

1 h.

Repeat, replacing h by h′ and (g1, . . . ,gs) by (g2, . . . ,gs).

Compressed word membership problem

Theorem
There is an algorithm that, given compressed words
A1, . . . ,An,B over a fixed finitely generated nilpotent group G,
decides in time polynomial in |B|+ |A1|+ . . .+ |An| whether or
not eval(B) belongs to the subgroup generated by
eval(A1), . . . , eval(An).

Kernels, centralizers,
conjugacy problem

Computing the kernel and pre-image of a
homomorphism

Let G and H be disjoint finitely generated nilpotent groups.
Let K = 〈g1, . . . ,gn〉 ≤ G
We specify a homomorphism φ : K → H by a list of
elements h1, . . . ,hn ∈ H such that φ(gi) = hi for
i = 1, . . . ,n.
Denote L = |h|+

∑m
i=1(|hi |+ |gi |).

Theorem
There is an algorithm that, given an element h ∈ H guaranteed
to be in the image of φ,

(i) computes a generating set X for the kernel of φ, and
(ii) computes an element g ∈ G such that φ(g) = h.

The algorithm runs in space O(log L) and time O(L log3 L).

Computing subgroup presentation

Theorem
Let G be a finitely presented nilpotent group. Let g1, . . . ,gn be
finite set of elements of G. Denote L =

∑n
i=1 |gi |. There is an

algorithm that computes a presentation for the subgroup
〈g1, . . . ,gn〉. The algorithm runs in space O(log L) and time
O(L log3 L).

Let N = 〈x1, . . . , xn〉 be the free nilpotent group of class c.
Define φ : N → G by xi 7→ gi .
Compute kerφ.
N/ kerφ ' imφ ' 〈g1, . . . ,gn〉.

Presentation for compressed-word subgroups

Theorem
Let G be a finitely presented nilpotent group.
Let A1, . . . ,An be a finite set of straight-line programs over
G.
Denote L =

∑n
i=1 |Ai |.

There is an algorithm that
computes a presentation for 〈eval(A1), . . . , eval(An)〉,
runs in time polynomial in L, and
the size of the presentation is bounded by a polynomial of
L.

Note. Size of presentation = number of generators plus sum of
the lengths of the relators.

An example on encoding presentations for SLPs

When working with SLPs, we get the relators as SLPs.
How do we write down a presentation involving these
relators?

Example. Suppose the following SLP is a relator.

A =
{

A1 → A2A3; A2 → A3A4; A3 → A4A4; A4 → x
}
.

Then eval(A) = x5 and |eval(A)| ∼ 2L.
To write a presentation using this relator we might do the
following.
(1) 〈x |xxxxx〉 (but the length here is ∼ 2L), so bad. Or,
(2) 〈x |A〉 (but this mixes encodings), so bad.

(3)
〈

x ,a1,a2,a3,a4|a1 = 1,
a1 = a2a3, a2 = a3a4,
a3 = a4a4, a4 = x

〉
. Size

O(L).

An example on encoding presentations for SLPs

When working with SLPs, we get the relators as SLPs.
How do we write down a presentation involving these
relators?

Example. Suppose the following SLP is a relator.

A =
{

A1 → A2A3; A2 → A3A4; A3 → A4A4; A4 → x
}
.

Then eval(A) = x5 and |eval(A)| ∼ 2L.
To write a presentation using this relator we might do the
following.
(1) 〈x |xxxxx〉 (but the length here is ∼ 2L), so bad. Or,
(2) 〈x |A〉 (but this mixes encodings), so bad.

(3)
〈

x ,a1,a2,a3,a4|a1 = 1,
a1 = a2a3, a2 = a3a4,
a3 = a4a4, a4 = x

〉
. Size

O(L).

Conjugacy problem

A group is conjugately separable if whenever two elements
are not conjugate, there is a finite quotient in which they
are not conjugate.
Gives rise to an enumerative algorithm to decide CP.
F.g. nilpotent groups are conjugately separable
(Remeslennikov ’69, Formanek ’76).
Sims ’94 gave an algorithm based on matrix reductions
and homomorphisms.
Complexity not analysed.

Computing centralizers

Theorem
Let G be a f.p. nilpotent group with Mal’cev basis of length
m.
Let g ∈ G.
Denote L = |g|.

There is an algorithm that
computes a generating set X for the centralizer of g in G,
runs in space O(log L) and time O(L log2 L).
X contains at most m elements, and
there is a degree (6mc2)m2

polynomial function of L that
bounds the length of each element of X .

The conjugacy problem is logspace decidable

Theorem
Let G be a finitely presented nilpotent group.
Let g,h ∈ G be given as words.
Denote L = |g|+ |h|.

There is an algorithm that
(i) produces u ∈ G such that g = u−1hu, or
(ii) determines that no such element u exists,

runs in space O(log L) and time O(L log2 L), and

the word length of u is bounded by a degree 2m(6mc2)m2

polynomial function of L.

Compressed-word CP is polynomial-time decidable

Theorem
Let G be a finitely presented nilpotent group. There is an
algorithm that, given two straight-line programs A and B over
G, determines in time polynomial in n = |A|+ |B| whether or
not eval(A) and eval(B) are conjugate in G. If so, a straight-line
program over G of size polynomial in n producing a conjugating
element is returned.

Presentation-uniform algorithms

Presentation-uniform algorithms

Main issue: given an arbitrary presentation of a nilpotent group,
to use the above algorithms, one needs to find a “good”
presentation first.

Theorem
Let c, r be fixed. There is a polynomial time algorithm that,
given a group presentation 〈X | R〉 for G in the class of
r -generated class ≤ c nilpotent groups, produces a “good”
presentation for G.

Presentation-uniform algorithms

Corollary
Let Π denote any of the problems (I)–(VI). For all c, r ∈ N, there
is a polynomial time algorithm that, given a finite presentation
〈X |R〉 of a group in Nc,r and input of Π as words in X , solves Π
in 〈X |R〉 on that input.

(I) Compute Mal’cev normal form.
(II) Membership problem.

(III) Compute the kernel of a homomorphism.
(IV) Compute subgroup presentations.
(V) Compute the centralizer of an element.

(VI) Conjugacy (search) problem.

Free stuff

Finite separability growth

Theorem [K.Bou-Rabbee, D.Studenmund 2014]
Let G be a finitely generated nilpotent group. There is a
polynomial P(n) such that the ball Bn in the Cayley graph of G
is discriminated in a finite group of order ≤ P(n).

Add our poly bounds, obtain

Theorem
Let G be a finitely generated nilpotent group. There is a
polynomial R such that g,h ∈ G are conjugate in G if and only if
their images are conjugate in some finite quotient Ḡ of G with
|Ḡ| ≤ R(|g|+ |h|).

Theorem
Let G be a finitely generated nilpotent group. There is a
polynomial S such that h ∈ G belongs to a subgroup generated
by h1, . . . ,hk ∈ G if and only if the same is true for their images
in some finite quotient Ḡ of G with |Ḡ| ≤ S(|g|+ |h|).

Add our poly bounds, obtain

Theorem
Let G be a finitely generated nilpotent group. There is a
polynomial R such that g,h ∈ G are conjugate in G if and only if
their images are conjugate in some finite quotient Ḡ of G with
|Ḡ| ≤ R(|g|+ |h|).

Theorem
Let G be a finitely generated nilpotent group. There is a
polynomial S such that h ∈ G belongs to a subgroup generated
by h1, . . . ,hk ∈ G if and only if the same is true for their images
in some finite quotient Ḡ of G with |Ḡ| ≤ S(|g|+ |h|).

Add our poly bounds, obtain

Theorem
Let G be a finitely generated nilpotent group. There is a
polynomial R such that g,h ∈ G are conjugate in G if and only if
their images are conjugate in some finite quotient Ḡ of G with
|Ḡ| ≤ R(|g|+ |h|).

Theorem
Let G be a finitely generated nilpotent group. There is a
polynomial S such that h ∈ G belongs to a subgroup generated
by h1, . . . ,hk ∈ G if and only if the same is true for their images
in some finite quotient Ḡ of G with |Ḡ| ≤ S(|g|+ |h|).

Conjugacy in relatively hyperbolic groups

Theorem [I.Bumagin 2014]

Conjugacy (search) problem is polynomial time solvable in
relatively hyperbolic groups if it is solvable in polynomial time in
each parabolic subgroup.

Add our results, get

Theorem
Conjugacy (search) problem is polynomial time solvable in
groups hyperbolic relative to nilpotent subgroups.

Conjugacy in relatively hyperbolic groups

Theorem [I.Bumagin 2014]

Conjugacy (search) problem is polynomial time solvable in
relatively hyperbolic groups if it is solvable in polynomial time in
each parabolic subgroup.

Add our results, get

Theorem
Conjugacy (search) problem is polynomial time solvable in
groups hyperbolic relative to nilpotent subgroups.

Not so free stuff

Further developments

Work in progress (J.M, A.M, A.N., S.V., K.Blaney, A.Garreta,
F.Gul, D.Ovchinnikov, M.Sohrabi):

Finite separability questions.
Algorithms to compute torsion subgroup and isolators.
Algorithms to compute intersections of subgroups and
cosets.
Algorithms to solve subgroup conjugacy, simultaneous
conjugacy, to compute normalizers.
Distortion of embeddings into UT (n,Z).
(Un)solvability of systems of quadratic equations over
nilpotent groups.
Fast practical algorithms in generalized Heisenberg
groups.

Further developments

Work in progress (J.M, A.M, A.N., S.V., K.Blaney, A.Garreta,
F.Gul, D.Ovchinnikov, M.Sohrabi):

Finite separability questions.
Algorithms to compute torsion subgroup and isolators.
Algorithms to compute intersections of subgroups and
cosets.
Algorithms to solve subgroup conjugacy, simultaneous
conjugacy, to compute normalizers.
Distortion of embeddings into UT (n,Z).
(Un)solvability of systems of quadratic equations over
nilpotent groups.
Fast practical algorithms in generalized Heisenberg
groups.

Further developments

Work in progress (J.M, A.M, A.N., S.V., K.Blaney, A.Garreta,
F.Gul, D.Ovchinnikov, M.Sohrabi):

Finite separability questions.
Algorithms to compute torsion subgroup and isolators.
Algorithms to compute intersections of subgroups and
cosets.
Algorithms to solve subgroup conjugacy, simultaneous
conjugacy, to compute normalizers.
Distortion of embeddings into UT (n,Z).
(Un)solvability of systems of quadratic equations over
nilpotent groups.
Fast practical algorithms in generalized Heisenberg
groups.

Further developments

Work in progress (J.M, A.M, A.N., S.V., K.Blaney, A.Garreta,
F.Gul, D.Ovchinnikov, M.Sohrabi):

Finite separability questions.
Algorithms to compute torsion subgroup and isolators.
Algorithms to compute intersections of subgroups and
cosets.
Algorithms to solve subgroup conjugacy, simultaneous
conjugacy, to compute normalizers.
Distortion of embeddings into UT (n,Z).
(Un)solvability of systems of quadratic equations over
nilpotent groups.
Fast practical algorithms in generalized Heisenberg
groups.

Further developments

Work in progress (J.M, A.M, A.N., S.V., K.Blaney, A.Garreta,
F.Gul, D.Ovchinnikov, M.Sohrabi):

Finite separability questions.
Algorithms to compute torsion subgroup and isolators.
Algorithms to compute intersections of subgroups and
cosets.
Algorithms to solve subgroup conjugacy, simultaneous
conjugacy, to compute normalizers.
Distortion of embeddings into UT (n,Z).
(Un)solvability of systems of quadratic equations over
nilpotent groups.
Fast practical algorithms in generalized Heisenberg
groups.

Further developments

Work in progress (J.M, A.M, A.N., S.V., K.Blaney, A.Garreta,
F.Gul, D.Ovchinnikov, M.Sohrabi):

Finite separability questions.
Algorithms to compute torsion subgroup and isolators.
Algorithms to compute intersections of subgroups and
cosets.
Algorithms to solve subgroup conjugacy, simultaneous
conjugacy, to compute normalizers.
Distortion of embeddings into UT (n,Z).
(Un)solvability of systems of quadratic equations over
nilpotent groups.
Fast practical algorithms in generalized Heisenberg
groups.

Further developments

Work in progress (J.M, A.M, A.N., S.V., K.Blaney, A.Garreta,
F.Gul, D.Ovchinnikov, M.Sohrabi):

Finite separability questions.
Algorithms to compute torsion subgroup and isolators.
Algorithms to compute intersections of subgroups and
cosets.
Algorithms to solve subgroup conjugacy, simultaneous
conjugacy, to compute normalizers.
Distortion of embeddings into UT (n,Z).
(Un)solvability of systems of quadratic equations over
nilpotent groups.
Fast practical algorithms in generalized Heisenberg
groups.

Further developments

Work in progress (J.M, A.M, A.N., S.V., K.Blaney, A.Garreta,
F.Gul, D.Ovchinnikov, M.Sohrabi):

Finite separability questions.
Algorithms to compute torsion subgroup and isolators.
Algorithms to compute intersections of subgroups and
cosets.
Algorithms to solve subgroup conjugacy, simultaneous
conjugacy, to compute normalizers.
Distortion of embeddings into UT (n,Z).
(Un)solvability of systems of quadratic equations over
nilpotent groups.
Fast practical algorithms in generalized Heisenberg
groups.

