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Non-commutative discrete optimization

Basic idea:

Take a classic algorithmic problem from computer science
(traveling salesman, Post correspondence, knapsack, ...) and
translate it into group-theoretic setting.



Example: Post correspondence problem

Let A be an alphabet, |A| > 2.

The classic Post correspondence problem (PCP)

Given a finite set of pairs (g1, h1), ..., (g, hx) of elements of A*
determine if there is a non-empty word w(xi, ..., xx) € X* such
that w(gi,...,gk) = w(hy,..., hg) in A*.
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Example: Post correspondence problem

Matching dominoes: top = bottom

8i, | 8, | 8ix 8i,

hil hI'2 hl3 In

Decidable if number of pairs is k < 2.
Undecidable if k > 5 (T.Neary 2015).
Unknown if 3 < k < 4.
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Example: Post correspondence problem

Variations of PCP in groups turn out to be closely related to:
» double-endo-twisted conjugacy problem
(find w € G s.t. uw? = w¥v),
» equalizer problem
(find the subgroup of elements g s.t. ¢(g) = ¥(g)),
» hereditary word problem

(word problem in any quotient of G by a subgroup f.g. as a
normal subgroup).
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Example: Bounded submonoid membership problem

Bounded submonoid membership problem BSMP(G):
Given g1,...,8n, & € G and N € N, decide if g can be expressed as

g:gl'l"'gi/\/n MSN

There are hyperbolic groups where the membership problem is
undecidable, but BSMP(G) is P-time for every hyperbolic G.
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Subset sum problem

The classic subset sum problem (SSP):
Given ay,...,ak, a € Z decide if

grar+...+tekax =a

for some e1,...,ex € {0,1}.

SSP for a group G:
Given g1,...,8k, g € G decide if

gl...gk=g

for some e1,...,ex € {0,1}.

Elements in G are given as words in a fixed set of generators of G.
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Algorithmic set-up

Classic SSP is pseudopolynomial

> If input is given in unary, SSP is in P,
» if input is given in binary, SSP is NP-complete.

The complexity of SSP(G) does not depend on a finite generating
set, but may depend on a generating set if infinite ones are allowed.

For example:
SSP(Z)

» SSP(Z) € P if Z is generated by {1},
» SSP(Z) is NP-complete if Z is generated by {2" | n € N}.



SSP in groups. Initial results

Complexity of SSP(G) (A.Myasnikov, A.N., A.Ushakov. Knapsack

problems in groups):
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SSP in groups. Initial results

Complexity of SSP(G) (A.Myasnikov, A.N., A.Ushakov. Knapsack
problems in groups):

Group Complexity Why
Virt. nilpotent P Poly growth
YRV NP-complete 7¥, ZOE
Free metabelian NP-complete YRY/
Thompson’s F NP-complete YRY/
BS(1,p) NP-complete Binary SSP(Z)
Hyperbolic P Log depth

Note that the NP-completeness is despite unary input.
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SSP in groups. Initial results

Polynomial time solution to SSP in virtually nilpotent groups.

Given input gi,..., 8k, g, build lists of elements that can be

represented as
€1
gl )
E1 4E2
gl g2 I
€1 €2 €3
81 87837

ey



SSP in groups. Initial results

Polynomial time solution to SSP in virtually nilpotent groups.
Given input gi,..., 8k, g, build lists of elements that can be
represented as
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SSP in groups. Initial results

Polynomial time solution to SSP in virtually nilpotent groups.
Given input gi,..., 8k, g, build lists of elements that can be
represented as

gt

g'8°

81'8,°85°;
9

€1 €2 €3 Ek
81'8°83° 8"

Each list is polynomial size by polynomial growth.
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SSP in groups. Initial results

NP-completeness of SSP in BS(1,2).
BS(1,2) = (a, t | a* = a%).
The subgroup (a) is exponentially distorted,

th 2n
a = 4 .
~— =
2n+1 2n

Encode classic binary SSP by elements of the form

Lt _t™ tm

gi=a a " .---a
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SSP in groups. Recent results

E.Frenkel, A.N., A.Ushakov; M.Lohrey, G.Zetzshe.
Behavior of SSP under group-theoretic constructions.

A.Treyer, A.Mishchenko.
SSP in lamplighter groups is NP-complete.

D.Konig, M.Lohrey, G.Zetzsche.
SSP in virtually nilpotent groups is NL-complete.
There is a polycyclic group with NP-complete SSP.
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Main result

What about other polycyclic groups?

Idea: a polycyclic group is either virtually nilpotent or has
exponential distortion.

Theorem (A.N., A.Ushakov)

Let G be a polyclic group. Then SSP(G) is NP-complete if and
only if G is not virtually nilpotent.

Since polycyclic groups are linear, it suffices to prove NP-hardness.



Proof of main result. Case Z x Z"

Consider G =Z x 2" = (h) X (e1,..., en).
Let h act by conjugation via matrix M € GL,(Z).

Observation: G is not virtually nilpotent if and only if M has an
eigenvalue || > 1.

For any constant A > 0, there is a power h of h and
group elements vy,...,vk,... € Z",

~

Vi = hfke,'k hk,

such that [|vier | > Allvall.
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Zero-one equation problem (exact set cover problem).

Given an N x N matrix A of 0 and 1, decide if there is a column X
of 0 and 1 s.t. AX =1V, where 1V = (1,...,1) is a column of 1s.



Proof of main result. Reduction of ZOE

Zero-one equation problem (exact set cover problem).

Given an N x N matrix A of 0 and 1, decide if there is a column X
of 0 and 1 s.t. AX =1V, where 1V = (1,...,1) is a column of 1s.

Reduce ZOE to SSP((g) x Z") as follows.

Given A and b, pick sufficiently large A and encode each
coordinate 1 < k < N by vi. For example,

column 010011 < vavgvg.
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Proof of main result. Reduction of ZOE

More precisely, for

a1l ... diN

ani --. dnnN

consider the instance (gi,...,8n, &) of SSP(G), where:

aij

g =V i

ovy" and g =vi..owy.

Since [|vikt1|| > Al|vk||, this instance of SSP is equivalent to the
given instance of ZOE.
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Proof of main result. General case

Let G by polycyclic and F its Fitting (maximal nilpotent)
subgroup. Suffices to assume G = (h) x F.

Terms of lower central series for F are fully invariant, thus normal
in G, so h acts by conjugation on abelian quotients F;/Fj 1, say
with matrix M;.

Fact. G is not virtually nilpotent if and only if one of M; has
eigenvalue o] > 1.
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Have: reduction of ZOE to SSP((h) x F;/Fji1).
Want: reduction of ZOE to SSP((h) x F;).

In terms of a specific instance:
Have:

Want:



Proof of main result. General case

Luckily, g; are in nilpotent F, so we can rearrange

Ei

g=28;

1 .

&
g =gt gy e, el™len-1. 8N, - gN]™

at the cost of adding iterated commutators. By properties of
nilpotent groups, £ and all n; are only polynomially large.



Proof of main result. General case

Ultimately, for a given instance of ZOE, an equivalent instance of
SSP(G) is

gla"'7gN7fla'--aflyf;[il)'"7&717"'aféa"'afkaféilv"'afgilagv
R,_/\ " H,—/\ —_—
P(N) P(N) P(N) P(N)

where g;, g are as described above, f; are iterated commutators of
gi, and P(N) is a polynomial in N.
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What's next

» SSP(Metabelian),

» SSP(Solvable),

» SSP(Grigorchuk’s).



