Subset sum problem in polycyclic groups

Andrey Nikolaev (Stevens Institute of Technology)

GAGTA-10, June 14, 2016

Based on joint work with A.Ushakov

Non-commutative discrete optimization

Basic idea:

Take a classic algorithmic problem from computer science (traveling salesman, Post correspondence, knapsack, ...) and translate it into group-theoretic setting.

Let A be an alphabet, $|A| \ge 2$.

The classic Post correspondence problem (PCP)

Given a finite set of pairs $(g_1, h_1), \ldots, (g_k, h_k)$ of elements of A^* determine if there is a non-empty word $w(x_1, \ldots, x_k) \in X^*$ such that $w(g_1, \ldots, g_k) = w(h_1, \ldots, h_k)$ in A^* .

Matching dominoes: top = bottom

g _{i1}	g _{i2}	g _{i3}	 <i>g</i> i _n
h_{i_1}	<i>h</i> _{<i>i</i>₂}	<i>h</i> _{<i>i</i>₃}	 h _{in}

Decidable if number of pairs is $k \le 2$. Undecidable if $k \ge 5$ (T.Neary 2015). Unknown if $3 \le k \le 4$.

Matching dominoes: top = bottom

g _{i1}	g _{i2}	g _{i3}	 g _{in}
h_{i_1}	<i>h</i> _{<i>i</i>₂}	<i>h</i> _{<i>i</i>₃}	 h _{in}

Decidable if number of pairs is $k \le 2$. Undecidable if $k \ge 5$ (T.Neary 2015). Unknown if $3 \le k \le 4$.

Variations of **PCP** in groups turn out to be closely related to:

double-endo-twisted conjugacy problem

(find $w \in G$ s.t. $uw^{\varphi} = w^{\psi}v$),

- equalizer problem (find the subgroup of elements g s.t. $\varphi(g) = \psi(g)$),
- hereditary word problem (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

Variations of **PCP** in groups turn out to be closely related to:

- b double-endo-twisted conjugacy problem (find w ∈ G s.t. uw^φ = w^ψv),
- equalizer problem (find the subgroup of elements g s.t. $\varphi(g) = \psi(g)$),
- hereditary word problem (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

Variations of **PCP** in groups turn out to be closely related to:

- b double-endo-twisted conjugacy problem (find w ∈ G s.t. uw^φ = w^ψv),
- equalizer problem

(find the subgroup of elements g s.t. $\varphi(g) = \psi(g)$),

 hereditary word problem (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

Variations of **PCP** in groups turn out to be closely related to:

- b double-endo-twisted conjugacy problem (find w ∈ G s.t. uw^φ = w^ψv),
- equalizer problem
 (find the subgroup of elements g s.t. φ(g) = ψ(g)),
- hereditary word problem (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

Variations of **PCP** in groups turn out to be closely related to:

- b double-endo-twisted conjugacy problem (find w ∈ G s.t. uw^φ = w^ψv),
- equalizer problem
 (find the subgroup of elements g s.t. φ(g) = ψ(g)),
- hereditary word problem

(word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

Variations of **PCP** in groups turn out to be closely related to:

- b double-endo-twisted conjugacy problem (find w ∈ G s.t. uw^φ = w^ψv),
- equalizer problem
 (find the subgroup of elements g s.t. φ(g) = ψ(g)),
- hereditary word problem (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

Bounded submonoid membership problem BSMP(G):

Given $g_1,\ldots,g_n,g\in G$ and $N\in\mathbb{N}$, decide if g can be expressed as

$$g=g_{i_1}\cdots g_{i_M}, \quad M\leq N.$$

There are hyperbolic groups where the membership problem is undecidable, but BSMP(G) is **P**-time for every hyperbolic *G*.

Bounded submonoid membership problem BSMP(G):

Given $g_1,\ldots,g_n,g\in G$ and $N\in\mathbb{N}$, decide if g can be expressed as

$$g = g_{i_1} \cdots g_{i_M}, \quad M \leq N.$$

There are hyperbolic groups where the membership problem is undecidable, but BSMP(G) is P-time for every hyperbolic G.

Bounded submonoid membership problem BSMP(G):

Given $g_1,\ldots,g_n,g\in G$ and $N\in\mathbb{N}$, decide if g can be expressed as

$$g = g_{i_1} \cdots g_{i_M}, \quad M \leq N.$$

There are hyperbolic groups where the membership problem is undecidable, but BSMP(G) is P-time for every hyperbolic G.

Subset sum problem

The classic subset sum problem (**SSP**): Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

$$\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

SSP for a group *G*: Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{\varepsilon_1}\dots g_k^{\varepsilon_k}=g$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

Elements in G are given as words in a fixed set of generators of G.

Subset sum problem

The classic subset sum problem (**SSP**): Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

$$\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

SSP for a group G: Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{\varepsilon_1}\dots g_k^{\varepsilon_k}=g$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

Elements in G are given as words in a fixed set of generators of G.

Subset sum problem

The classic subset sum problem (**SSP**): Given $a_1, \ldots, a_k, a \in \mathbb{Z}$ decide if

$$\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

SSP for a group *G*: Given $g_1, \ldots, g_k, g \in G$ decide if

$$g_1^{\varepsilon_1}\dots g_k^{\varepsilon_k}=g$$

for some $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$.

Elements in G are given as words in a fixed set of generators of G.

Algorithmic set-up

Classic **SSP** is pseudopolynomial

- If input is given in unary, SSP is in P,
- if input is given in binary, **SSP** is **NP**-complete.

The complexity of SSP(G) does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:

 $\mathsf{SSP}(\mathbb{Z})$

- ▶ $SSP(\mathbb{Z}) \in P$ if \mathbb{Z} is generated by $\{1\}$,
- ▶ **SSP**(\mathbb{Z}) is **NP**-complete if \mathbb{Z} is generated by $\{2^n \mid n \in \mathbb{N}\}$.

Algorithmic set-up

Classic **SSP** is pseudopolynomial

- If input is given in unary, SSP is in P,
- if input is given in binary, **SSP** is **NP**-complete.

The complexity of SSP(G) does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:

 $\mathsf{SSP}(\mathbb{Z})$

- ▶ $SSP(\mathbb{Z}) \in P$ if \mathbb{Z} is generated by $\{1\}$,
- ▶ **SSP**(\mathbb{Z}) is **NP**-complete if \mathbb{Z} is generated by $\{2^n \mid n \in \mathbb{N}\}$.

Algorithmic set-up

Classic **SSP** is pseudopolynomial

- If input is given in unary, SSP is in P,
- if input is given in binary, **SSP** is **NP**-complete.

The complexity of SSP(G) does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:

 $\mathsf{SSP}(\mathbb{Z})$

- $SSP(\mathbb{Z}) \in P$ if \mathbb{Z} is generated by $\{1\}$,
- ▶ **SSP**(\mathbb{Z}) is **NP**-complete if \mathbb{Z} is generated by $\{2^n \mid n \in \mathbb{N}\}$.

Complexity of SSP(G) (A.Myasnikov, A.N., A.Ushakov. Knapsack problems in groups):

Group	Complexity	Why
Virt. nilpotent	Р	Poly growth
$\mathbb{Z}\wr\mathbb{Z}$	NP-complete	$\mathbb{Z}^{\omega}, \ \mathbf{ZOE}$
Free metabelian	NP-complete	$\mathbb{Z}\wr\mathbb{Z}$
Thompson's F	NP-complete	$\mathbb{Z}\wr\mathbb{Z}$
BS(1, p)	NP-complete	Binary $SSP(\mathbb{Z})$
Hyperbolic	Р	Log depth

Note that the **NP**-completeness is despite unary input.

Complexity of SSP(G) (A.Myasnikov, A.N., A.Ushakov. Knapsack problems in groups):

Group	Complexity	Why
Virt. nilpotent	Р	Poly growth
$\mathbb{Z}\wr\mathbb{Z}$	NP-complete	$\mathbb{Z}^{\omega}, \ ZOE$
Free metabelian	NP-complete	$\mathbb{Z}\wr\mathbb{Z}$
Thompson's F	NP-complete	$\mathbb{Z}\wr\mathbb{Z}$
BS(1,p)	NP-complete	Binary $SSP(\mathbb{Z})$
Hyperbolic	Р	Log depth

Note that the **NP**-completeness is despite unary input.

Polynomial time solution to **SSP** in virtually nilpotent groups. Given input g_1, \ldots, g_k, g , build lists of elements that can be represented as

$$g_{1}^{\varepsilon_{1}},$$

$$g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}},$$

$$g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}}g_{3}^{\varepsilon_{3}},$$

$$\ldots,$$

$$g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}}g_{3}^{\varepsilon_{3}}\cdots g_{k}^{\varepsilon_{k}}.$$

Polynomial time solution to **SSP** in virtually nilpotent groups. Given input g_1, \ldots, g_k, g , build lists of elements that can be represented as

Polynomial time solution to **SSP** in virtually nilpotent groups. Given input g_1, \ldots, g_k, g , build lists of elements that can be represented as

$$g_{1}^{\varepsilon_{1}}, \\g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}}, \\g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}}g_{3}^{\varepsilon_{3}}, \\\dots, \\g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}}g_{3}^{\varepsilon_{3}}\cdots g_{k}^{\varepsilon_{k}}$$

Polynomial time solution to **SSP** in virtually nilpotent groups. Given input g_1, \ldots, g_k, g , build lists of elements that can be represented as

$$g_{1}^{\varepsilon_{1}},$$

$$g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}},$$

$$g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}}g_{3}^{\varepsilon_{3}},$$

$$\ldots,$$

$$g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}}g_{3}^{\varepsilon_{3}}\cdots g_{k}^{\varepsilon_{k}}.$$

Polynomial time solution to **SSP** in virtually nilpotent groups. Given input g_1, \ldots, g_k, g , build lists of elements that can be represented as

$$g_1^{\varepsilon_1}, \\g_1^{\varepsilon_1}g_2^{\varepsilon_2}, \\g_1^{\varepsilon_1}g_2^{\varepsilon_2}g_3^{\varepsilon_3}, \\\dots, \\g_1^{\varepsilon_1}g_2^{\varepsilon_2}g_3^{\varepsilon_3}\cdots g_k^{\varepsilon_k}.$$

Polynomial time solution to **SSP** in virtually nilpotent groups. Given input g_1, \ldots, g_k, g , build lists of elements that can be represented as

$$g_{1}^{\varepsilon_{1}},$$

$$g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}},$$

$$g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}}g_{3}^{\varepsilon_{3}},$$

$$\ldots,$$

$$g_{1}^{\varepsilon_{1}}g_{2}^{\varepsilon_{2}}g_{3}^{\varepsilon_{3}}\cdots g_{k}^{\varepsilon_{k}}.$$

NP-completeness of **SSP** in BS(1,2).

 $BS(1,2) = \langle a,t \mid a^t = a^2 \rangle.$

The subgroup $\langle a \rangle$ is exponentially distorted,

Encode classic binary SSP by elements of the form

$$g_i = a^{t^{n_1}} a^{t^{n_2}} \cdots a^{t^{n_m}}.$$

NP-completeness of **SSP** in BS(1,2).

 $BS(1,2) = \langle a,t \mid a^t = a^2 \rangle.$

The subgroup $\langle a \rangle$ is exponentially distorted,

Encode classic binary SSP by elements of the form

$$g_i = a^{t^{n_1}} a^{t^{n_2}} \cdots a^{t^{n_m}}$$

A.Treyer, A.Mishchenko. **SSP** in lamplighter groups is **NP**-complete.

What about other polycyclic groups?

Idea: a polycyclic group is either virtually nilpotent or has exponential distortion.

Theorem (A.N., A.Ushakov)

Let G be a polyclic group. Then SSP(G) is NP-complete if and only if G is not virtually nilpotent.

What about other polycyclic groups?

Idea: a polycyclic group is either virtually nilpotent or has exponential distortion.

Theorem (A.N., A.Ushakov)

Let G be a polyclic group. Then SSP(G) is NP-complete if and only if G is not virtually nilpotent.

What about other polycyclic groups?

Idea: a polycyclic group is either virtually nilpotent or has exponential distortion.

Theorem (A.N., A.Ushakov)

Let G be a polyclic group. Then SSP(G) is NP-complete if and only if G is not virtually nilpotent.

What about other polycyclic groups?

Idea: a polycyclic group is either virtually nilpotent or has exponential distortion.

Theorem (A.N., A.Ushakov)

Let G be a polyclic group. Then SSP(G) is NP-complete if and only if G is not virtually nilpotent.

Proof of main result. Case $\mathbb{Z} \ltimes \mathbb{Z}^n$

Consider
$$G = \mathbb{Z} \ltimes \mathbb{Z}^n = \langle h \rangle \ltimes \langle e_1, \ldots, e_n \rangle$$
.

Let *h* act by conjugation via matrix $M \in GL_n(\mathbb{Z})$.

Observation: G is not virtually nilpotent if and only if M has an eigenvalue $|\alpha| > 1$.

For any constant $\lambda > 0$, there is a power \hat{h} of h and group elements $v_1, \ldots, v_k, \ldots \in \mathbb{Z}^n$,

$$v_k = \hat{h}^{-k} e_{i_k} \hat{h}^k,$$

such that $\|\mathbf{v}_{k+1}\| > \lambda \|\mathbf{v}_k\|$.

Proof of main result. Reduction of **ZOE**

Zero-one equation problem (exact set cover problem).

Given an $N \times N$ matrix A of 0 and 1, decide if there is a column X of 0 and 1 s.t. $AX = 1^N$, where $1^N = (1, ..., 1)$ is a column of 1s.

Reduce **ZOE** to **SSP**($\langle g \rangle \ltimes \mathbb{Z}^n$) as follows.

Given A and b, pick sufficiently large λ and encode each coordinate $1 \le k \le N$ by v_k . For example,

column 010011 $\leftrightarrow v_2 v_5 v_6$.

Zero-one equation problem (exact set cover problem).

Given an $N \times N$ matrix A of 0 and 1, decide if there is a column X of 0 and 1 s.t. $AX = 1^N$, where $1^N = (1, ..., 1)$ is a column of 1s.

Reduce **ZOE** to **SSP**($\langle g \rangle \ltimes \mathbb{Z}^n$) as follows.

Given A and b, pick sufficiently large λ and encode each coordinate $1 \le k \le N$ by v_k . For example,

column 010011 $\leftrightarrow v_2 v_5 v_6$.

Proof of main result. Reduction of **ZOE**

More precisely, for

$$A = \begin{bmatrix} a_{11} & \dots & a_{1N} \\ \vdots & & \vdots \\ a_{N1} & \dots & a_{NN} \end{bmatrix}$$

consider the instance (g_1, \ldots, g_N, g) of **SSP**(G), where:

$$g_i = v_1^{a_{1i}} \dots v_N^{a_{Ni}}$$
 and $g = v_1 \dots v_N$.

Since $||v_{k+1}|| > \lambda ||v_k||$, this instance of **SSP** is equivalent to the given instance of **ZOE**.

Proof of main result. Reduction of **ZOE**

More precisely, for

$$A = \begin{bmatrix} a_{11} & \dots & a_{1N} \\ \vdots & & \vdots \\ a_{N1} & \dots & a_{NN} \end{bmatrix}$$

consider the instance (g_1, \ldots, g_N, g) of **SSP**(G), where:

$$g_i = v_1^{a_{1i}} \dots v_N^{a_{Ni}}$$
 and $g = v_1 \dots v_N$.

Since $||v_{k+1}|| > \lambda ||v_k||$, this instance of **SSP** is equivalent to the given instance of **ZOE**.

Let G by polycyclic and F its Fitting (maximal nilpotent) subgroup. Suffices to assume $G = \langle h \rangle \ltimes F$.

Terms of lower central series for F are fully invariant, thus normal in G, so h acts by conjugation on abelian quotients F_j/F_{j+1} , say with matrix M_j .

Fact. G is not virtually nilpotent if and only if one of M_j has eigenvalue $|\alpha| > 1$.

Let G by polycyclic and F its Fitting (maximal nilpotent) subgroup. Suffices to assume $G = \langle h \rangle \ltimes F$.

Terms of lower central series for F are fully invariant, thus normal in G, so h acts by conjugation on abelian quotients F_j/F_{j+1} , say with matrix M_j .

Fact. G is not virtually nilpotent if and only if one of M_j has eigenvalue $|\alpha| > 1$.

Let G by polycyclic and F its Fitting (maximal nilpotent) subgroup. Suffices to assume $G = \langle h \rangle \ltimes F$.

Terms of lower central series for F are fully invariant, thus normal in G, so h acts by conjugation on abelian quotients F_j/F_{j+1} , say with matrix M_j .

Fact. G is not virtually nilpotent if and only if one of M_j has eigenvalue $|\alpha| > 1$.

Have: reduction of **ZOE** to **SSP**($\langle h \rangle \ltimes F_j/F_{j+1}$). Want: reduction of **ZOE** to **SSP**($\langle h \rangle \ltimes F_j$).

In terms of a specific instance: Have:

$$g_{i_1}^{\varepsilon_{i_1}}\cdots g_{i_N}^{\varepsilon_{i_N}}=g.$$

Want:

$$g_1^{\varepsilon_1}\cdots g_N^{\varepsilon_N}=g.$$

Have: reduction of **ZOE** to **SSP**($\langle h \rangle \ltimes F_j/F_{j+1}$). Want: reduction of **ZOE** to **SSP**($\langle h \rangle \ltimes F_j$).

In terms of a specific instance:

Have:

$$g_{i_1}^{\varepsilon_{i_1}}\cdots g_{i_N}^{\varepsilon_{i_N}}=g.$$

Want:

$$g_1^{\varepsilon_1}\cdots g_N^{\varepsilon_N}=g.$$

Have: reduction of **ZOE** to **SSP**($\langle h \rangle \ltimes F_j/F_{j+1}$). Want: reduction of **ZOE** to **SSP**($\langle h \rangle \ltimes F_j$).

In terms of a specific instance: Have:

$$g_{i_1}^{\varepsilon_{i_1}}\cdots g_{i_N}^{\varepsilon_{i_N}}=g.$$

Want:

$$g_1^{\varepsilon_1}\cdots g_N^{\varepsilon_N}=g.$$

Luckily, g_i are in *nilpotent* F, so we can rearrange

$$g = g_{i_1}^{\varepsilon_{i_1}} \cdots g_{i_N}^{\varepsilon_{i_N}} = g_1^{\varepsilon_1} \cdots g_N^{\varepsilon_N} \cdot [g_1, g_2]^{n_1} \cdots [g_{N-1}, g_N, \dots, g_N]^{n_\ell}$$

at the cost of adding iterated commutators. By properties of nilpotent groups, ℓ and all n_i are only polynomially large.

Ultimately, for a given instance of **ZOE**, an equivalent instance of SSP(G) is

$$g_1,\ldots,g_N,\underbrace{f_1,\ldots,f_1}_{P(N)},\underbrace{f_1^{-1},\ldots,f_1^{-1}}_{P(N)},\ldots,\underbrace{f_\ell,\ldots,f_\ell}_{P(N)},\underbrace{f_\ell^{-1},\ldots,f_\ell^{-1}}_{P(N)},g,$$

where g_i, g are as described above, f_i are iterated commutators of g_i , and P(N) is a polynomial in N.

What's next

► **SSP**(Solvable),

▶ **SSP**(Grigorchuk's).

What's next

► SSP(Metabelian),

► SSP(Solvable),

▶ **SSP**(Grigorchuk's).

What's next

► SSP(Metabelian),

► SSP(Solvable),

▶ **SSP**(Grigorchuk's).