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Non-commutative discrete optimization

Basic idea:

Take a classic algorithmic problem from computer science
(traveling salesman, Post correspondence, knapsack, . . . ) and
translate it into group-theoretic setting.



Example: Post correspondence problem

Let A be an alphabet, |A| ≥ 2.

The classic Post correspondence problem (PCP)

Given a finite set of pairs (g1, h1), . . . , (gk , hk) of elements of A∗

determine if there is a non-empty word w(x1, . . . , xk) ∈ X ∗ such
that w(g1, . . . , gk) = w(h1, . . . , hk) in A∗.



Example: Post correspondence problem

Matching dominoes: top = bottom

gi1 gi2 gi3 . . . gin
hi1 hi2 hi3 . . . hin

Decidable if number of pairs is k ≤ 2.
Undecidable if k ≥ 5 (T.Neary 2015).
Unknown if 3 ≤ k ≤ 4.
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Example: Post correspondence problem

Variations of PCP in groups turn out to be closely related to:

I double-endo-twisted conjugacy problem
(find w ∈ G s.t. uwϕ = wψv),

I equalizer problem
(find the subgroup of elements g s.t. ϕ(g) = ψ(g)),

I hereditary word problem
(word problem in any quotient of G by a subgroup f.g. as a
normal subgroup).
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Example: Bounded submonoid membership problem

Bounded submonoid membership problem BSMP(G ):

Given g1, . . . , gn, g ∈ G and N ∈ N, decide if g can be expressed as

g = gi1 · · · giM , M ≤ N.

There are hyperbolic groups where the membership problem is
undecidable, but BSMP(G ) is P-time for every hyperbolic G .
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Subset sum problem

The classic subset sum problem (SSP):

Given a1, . . . , ak , a ∈ Z decide if

ε1a1 + . . .+ εkak = a

for some ε1, . . . , εk ∈ {0, 1}.

SSP for a group G :

Given g1, . . . , gk , g ∈ G decide if

g ε11 . . . g εkk = g

for some ε1, . . . , εk ∈ {0, 1}.
Elements in G are given as words in a fixed set of generators of G .
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Algorithmic set-up

Classic SSP is pseudopolynomial

I If input is given in unary, SSP is in P,

I if input is given in binary, SSP is NP-complete.

The complexity of SSP(G ) does not depend on a finite generating
set, but may depend on a generating set if infinite ones are allowed.

For example:

SSP(Z)

I SSP(Z) ∈ P if Z is generated by {1},
I SSP(Z) is NP-complete if Z is generated by {2n | n ∈ N}.
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SSP in groups. Initial results

Complexity of SSP(G ) (A.Myasnikov, A.N., A.Ushakov. Knapsack
problems in groups):

Group Complexity Why
Virt. nilpotent P Poly growth
Z o Z NP-complete Zω, ZOE
Free metabelian NP-complete Z o Z
Thompson’s F NP-complete Z o Z
BS(1, p) NP-complete Binary SSP(Z)
Hyperbolic P Log depth

Note that the NP-completeness is despite unary input.
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SSP in groups. Initial results

Polynomial time solution to SSP in virtually nilpotent groups.

Given input g1, . . . , gk , g , build lists of elements that can be
represented as

g ε11 ,

g ε11 g ε22 ,

g ε11 g ε22 g ε33 ,

. . . ,

g ε11 g ε22 g ε33 · · · g
εk
k .

Each list is polynomial size by polynomial growth.



SSP in groups. Initial results

Polynomial time solution to SSP in virtually nilpotent groups.

Given input g1, . . . , gk , g , build lists of elements that can be
represented as

g ε11 ,

g ε11 g ε22 ,

g ε11 g ε22 g ε33 ,

. . . ,

g ε11 g ε22 g ε33 · · · g
εk
k .

Each list is polynomial size by polynomial growth.



SSP in groups. Initial results

Polynomial time solution to SSP in virtually nilpotent groups.

Given input g1, . . . , gk , g , build lists of elements that can be
represented as

g ε11 ,

g ε11 g ε22 ,

g ε11 g ε22 g ε33 ,

. . . ,

g ε11 g ε22 g ε33 · · · g
εk
k .

Each list is polynomial size by polynomial growth.



SSP in groups. Initial results

Polynomial time solution to SSP in virtually nilpotent groups.

Given input g1, . . . , gk , g , build lists of elements that can be
represented as

g ε11 ,

g ε11 g ε22 ,

g ε11 g ε22 g ε33 ,

. . . ,

g ε11 g ε22 g ε33 · · · g
εk
k .

Each list is polynomial size by polynomial growth.



SSP in groups. Initial results

Polynomial time solution to SSP in virtually nilpotent groups.

Given input g1, . . . , gk , g , build lists of elements that can be
represented as

g ε11 ,

g ε11 g ε22 ,

g ε11 g ε22 g ε33 ,

. . . ,

g ε11 g ε22 g ε33 · · · g
εk
k .

Each list is polynomial size by polynomial growth.



SSP in groups. Initial results

Polynomial time solution to SSP in virtually nilpotent groups.

Given input g1, . . . , gk , g , build lists of elements that can be
represented as

g ε11 ,

g ε11 g ε22 ,

g ε11 g ε22 g ε33 ,

. . . ,

g ε11 g ε22 g ε33 · · · g
εk
k .

Each list is polynomial size by polynomial growth.



SSP in groups. Initial results

NP-completeness of SSP in BS(1, 2).

BS(1, 2) = 〈a, t | at = a2〉.

The subgroup 〈a〉 is exponentially distorted,

at
n︸︷︷︸

2n+1

= a2
n︸︷︷︸

2n

.

Encode classic binary SSP by elements of the form

gi = at
n1at

n2 · · · atnm .
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SSP in groups. Recent results

E.Frenkel, A.N., A.Ushakov; M.Lohrey, G.Zetzshe.
Behavior of SSP under group-theoretic constructions.

A.Treyer, A.Mishchenko.
SSP in lamplighter groups is NP-complete.

D.König, M.Lohrey, G.Zetzsche.
SSP in virtually nilpotent groups is NL-complete.
There is a polycyclic group with NP-complete SSP.
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Main result

What about other polycyclic groups?

Idea: a polycyclic group is either virtually nilpotent or has
exponential distortion.

Theorem (A.N., A.Ushakov)

Let G be a polyclic group. Then SSP(G ) is NP-complete if and
only if G is not virtually nilpotent.

Since polycyclic groups are linear, it suffices to prove NP-hardness.
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Proof of main result. Case Z n Zn

Consider G = Z n Zn = 〈h〉n 〈e1, . . . , en〉.

Let h act by conjugation via matrix M ∈ GLn(Z).

Observation: G is not virtually nilpotent if and only if M has an
eigenvalue |α| > 1.

For any constant λ > 0, there is a power ĥ of h and
group elements v1, . . . , vk , . . . ∈ Zn,

vk = ĥ−keik ĥ
k ,

such that ‖vk+1‖ > λ‖vk‖.



Proof of main result. Reduction of ZOE

Zero-one equation problem (exact set cover problem).

Given an N ×N matrix A of 0 and 1, decide if there is a column X
of 0 and 1 s.t. AX = 1N , where 1N = (1, . . . , 1) is a column of 1s.

Reduce ZOE to SSP(〈g〉n Zn) as follows.

Given A and b, pick sufficiently large λ and encode each
coordinate 1 ≤ k ≤ N by vk . For example,

column 010011↔ v2v5v6.
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Proof of main result. Reduction of ZOE

More precisely, for

A =

 a11 . . . a1N
...

...
aN1 . . . aNN


consider the instance (g1, . . . , gN , g) of SSP(G ), where:

gi = va1i1 . . . vaNiN and g = v1 . . . vN .

Since ‖vk+1‖ > λ‖vk‖, this instance of SSP is equivalent to the
given instance of ZOE.
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Proof of main result. General case

Let G by polycyclic and F its Fitting (maximal nilpotent)
subgroup. Suffices to assume G = 〈h〉n F .

Terms of lower central series for F are fully invariant, thus normal
in G , so h acts by conjugation on abelian quotients Fj/Fj+1, say
with matrix Mj .

Fact. G is not virtually nilpotent if and only if one of Mj has
eigenvalue |α| > 1.
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Proof of main result. General case

Luckily, gi are in nilpotent F , so we can rearrange

g = g
εi1
i1
· · · g εiNiN

= g ε11 · · · g
εN
N · [g1, g2]n1 · · · [gN−1, gN , . . . , gN ]n`

at the cost of adding iterated commutators. By properties of
nilpotent groups, ` and all ni are only polynomially large.



Proof of main result. General case

Ultimately, for a given instance of ZOE, an equivalent instance of
SSP(G ) is

g1, . . . , gN , f1, . . . , f1︸ ︷︷ ︸
P(N)

, f −11 , . . . , f −11︸ ︷︷ ︸
P(N)

, . . . , f`, . . . , f`︸ ︷︷ ︸
P(N)

, f −1` , . . . , f −1`︸ ︷︷ ︸
P(N)

, g ,

where gi , g are as described above, fi are iterated commutators of
gi , and P(N) is a polynomial in N.



What’s next

I SSP(Metabelian),

I SSP(Solvable),

I SSP(Grigorchuk′s).
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