Problem 7.1:

The radius of a circle (in cm) is stored as an 8-bit unsigned integer in a location labeled "radius". Write a program starting at location $\$ 4000$ to calculate the area of the circle (in cm^{2}) and store the result as a 16-bit unsigned integer in a location labeled "area". Round the result to the nearest integer value. You can use 3.142 as an approximation to π.

Problem 7.2:

Write a program starting at $\$ 3800$ to copy the contents of memory location $\$ 1000$ to location $\$ 1001$ in bit reversed order. In other words, bit0 of $\$ 1000$ is copied to bit7 of $\$ 1001$, bit1 of $\$ 1000$ is copied to bit6 of $\$ 1002$, etc. At the end of the operation, memory location $\$ 1000$ should be unchanged from its initial value.

Solution 7.1:

Square radius and multiply by 3142/1000. Round by adding 500 to dividend before dividing by 1000 .

ORG	\$4000	
ldaa	radius	; load A with radius
tfr	A, B	; copy to B
mul		; D = radius^2
ldy	\#3142	
emul		; Y:D $=3142 *$ (radius $\wedge 2)$
addd	\#500	; allow for rounding
exg	Y, D	
adcb	\#0	; propagate carry into MSbytes
adca	\#0	
exg	Y, D	
ldx	\#1000	; Y = $\left(3142^{*}(\right.$ radius^2 $\left.)\right) / 1000$
ediv		
sty	area	

Solution 7.2:

Load source data in A. Then use a loop and the rotate instruction to move bits from A into destination memory location in reverse order.

ORG \$3800
ldy \#8 ; loop counter
ldaa $\quad \$ 1000 \quad$; source data in acc. A
loop: lsra ; carry = LSB of A (with right shift of A)
rol ; move carry into LSB of $\$ 1002$ (with left shift of mem loc)
dbnz Y, loop ; done yet?
bgnd

