
 1

Problem 9.1:

Write a subroutine cnt_one to determine the number of ‘1’s in a 16-bit word. A pointer
to the 16-bit word to be tested is passed in register X. The result should be returned in
accumulator A. The subroutine must not modify the word being tested and must save
any registers or accumulators used by the subroutine (except for A). (Hint: create an 8-
bit local variable on the stack for counting the number of ones)

 2

Problem 9.2:

(a) The program below is executed from the address labeled start. Draw the stack frame

showing the position of the stack pointer and the address and contents of each byte on
the stack (where known) when the processor is executing the instruction labeled test2.
(You do not need to determine the value of the return address(s). Simply indicate
their position on the stack).

(b) Then redraw the stack frame showing the position of the stack pointer when the

processor is executing the instruction labeled test1.

start: lds #$5400
 ldd #$8A32
 ldx #$7766
 pshd
 jsr abc
 pshx
test1: clra
 …
 …
abc: leas -2, SP
 pshx
 addd #$20
 jsr xyz
 pulx
 leas 2, SP
 rts
 …
 …
xyz: pshd
test2: inx
 puld
 rts

 3

Solution 9.1:

Shift & test using D
Loop counter in Y
Accumulate count in local variable count on stack
Need to save B and Y

Stack frame looks like: [return]
 [address]
 [save Y]
 [save B]
 SP ⇒ [count]

Code is:

count: EQU 0

cnt_one: pshy ; save Y
 pshb ; save B
 leas -1, SP ; make space for count
 ldd 0, X ; load data into D
 ldy #16 ; initialize loop counter

loop: lsrd ; shift LSB into carry
 bcc ; test carry for ‘1’
 inc count, SP ; increment count
skip: dbne Y, loop ; done yet?
 ldaa count, SP ; put result into A
 leas 1, SP ; release local variable space
 pulb ; restore B
 puly ; restore Y
 rts

 4

Solution 9.2:

(a) ADDR DATA

 $5400 ??
 $53FF $32
 $53FE $8A
 $53FD [RET]
 $53FC [ADDR1]
 $53FB ??
 $53FA ??
 $53F9 $66
 $53F8 $77
 $53F7 [RET]
 $53F6 [ADDR2]
 $53F5 $52

 SP⇒ $53F4 $8A

(b) ADDR DATA

 $5400 ??
 $53FF $32
 $53FE $8A
 $53FD $66

 SP⇒ $53FC $77

