
CpE 390 Microprocessor Systems

Lab 3: Data Structures and Subroutines

1. Searching for a numeric key in an array

The following code is similar to that given in Lecture 7 as an example of how one might
search for a particular key (in this case, the numeric value $190) in an array of 16-bit
integers. The array in this example (vecx) has been preloaded with fifteen 16-bit hex values.
The program searches for the key in the array. If it finds the key, it stores the array index of
the word that matches the key in the location named result. If it does not find the key, it
stores the “not found” code, which is defined as $FF (or -1)

N: EQU 15 ; length of array
NFC: EQU $FF ; not-found code
key: EQU $190
CR: EQU $0D ; ASCII return
LF: EQU $0A ; ASCII line feed

 ORG $5000
result: DS.B 1 ;reserve a byte for result
vecx: DC.W $D1A, $B5, $39F, $980, $E4F, $186, $E3, $319, $430
 DC.W $4, $190, $22C, $189, $A55, $30D
str1: DC.B "Key found", CR, LF, 0
str2: DC.B "Key not found", CR, LF, 0

 ORG $4000
 clrb ; initialize index = 0
 movb #NFC, result ; initialize search result
 ldy #key ; set key we’re searching for
 ldx #vecx ; set up X as pointer to array
loop: tfr B, A ; copy index to A
 lsla ; and multiply by 2 to give byte offset
 cpy A, X ; compare key to array element
 beq found ; branch if element = key
 incb ; if not – increment index
 cmpb #N ; are we at the end of the array yet?
 bne loop ; no – go check next value
 ldx #str2 ; yes - we’re done without finding key
 jsr putstr
 bra done
found: stab result ; write index into result
 ldx #str1
 jsr putstr
done: swi ; return to monitor

There are two differences to the code we used in the lecture. The first is that we are using hex
numbers instead of decimal, because it’s easier to do input and output using hex characters.
The second difference is that we are calling a subroutine putstr to output a string message on
the terminal. This message will tell us whether or not the program found the specified key.
Don’t worry too much about how this routine works – we haven’t done serial I/O in class yet.
All you need to know is that you pass a pointer to the string you want to print out in register
X.

(a) Enter the program into MiniIDE.

(b) Append the following output routines to the end of your program

SCIOSR1: EQU $00CC
SCIODRL: EQU $00CF

putstr: psha ; output null terminated string to terminal
ploop: ldaa 1, X+ ; X contains pointer to string
 beq pdone
 jsr putc
 bra ploop
pdone: pula
 rts

putc: brclr SCIOSR1, $80, * ; output single character to terminal
 staa SCIODRL
 rts

(c) Assemble and download your program

(d) Run the program and determine whether the key was found in the array. Did the
correct string print out on the terminal? Check the data in labeled memory location
result to see if it correctly identified the location of the key in the array.

(e) Change the value of the key (could be a value that is or is not in the array),
reassemble, load and rerun and see if you still get the expected result.

(f) Append the code on the next page to the end of your program. This adds another
output routine puthx8 which will convert the 8-bit value in accumulator A to two hex
digits and output them on the terminal.

(g) Add code to your program to print out the value of the index result in the form:

 Index = $??

Where “??” are the two hex digits that are the value of the result. You can do this in three steps.

1. Print out the string “Index=$”
2. Print out the hex value of the result
3. Print out CR, LF to end the line of text

puthx8: psha ; output 8bit value in acc A as two hex digits
 lsra
 lsra
 lsra
 lsra
 jsr puthx4
 pula
 anda #$0F
 jsr puthx4
 rts

puthx4: cmpa #$A ; output 4-bit value in acc A as a hex character
 blo hxnum
 adda #$7
hxnum: adda #$30
 jsr putc
 rts

2. Counting characters and words in a string

The following program counts the characters and words in a string – a standard function in
any word processing program. The program assumes that the string is terminated by a NULL
character and that words are terminated by one or more space characters. The program does
not check for illegal text characters or other spaces such as tab, newline etc.

 space: EQU $20

 ORG $5000
ch_cnt: ds.b 1 ;character count
wd_cnt: ds.b 1 ;word count
str_x: dc.b "Peter Piper picked a peck of pickled peppers", 0

 ORG $4000
 ldx #str_x ;X is character pointer
 clr ch_cnt ;clear character count
 clr wd_cnt ;clear word count
str_lp: ldab 1,x+ ;read a character
 beq done ;end of string?
 inc ch_cnt ;increment character count
 cmpb #space ;check for space character
 beq str_lp
 inc wd_cnt ;found non-space: must be at start of word
wd_lp: ldab 1,x+ ;read a character

 beq done ;end of string?
 inc ch_cnt ;increment character count
 cmpb #space ;check for space character
 beq str_lp
 bra wd_lp ;non-space character is part of word
done: swi

(a) Enter, assemble and download your program

(b) Run the program and determine whether the correct number of words and characters
are found. Do spaces count as characters?

(c) Change the sentence in str_x to something of your choosing and re-run the program.
Verify that it still runs correctly.

3. Re-write character and word counting function as a subroutine

Now take the code that you just used to count words and characters in a string and convert it
into a subroutine. The main program should pass the address of the string in the X register.
The word count and character count results should be stored in memory locations ch_cnt and
wd_cnt as before. You will need to complete the following steps:

(a) Take the counting portion of your program and change it to a subroutine by putting a
label “count:” at the first executable instruction. Note that you will not need to load
the X register as part of the subroutine – the subroutine assumes that the string
address has already been loaded into the X register. The first executable instruction in
the subroutine will be the one that clears the character count. Right before this first
executable instruction, use an ORG directive to place the subroutine at a suitable
place in memory.

(b) Place a return from subroutine rts instruction at the end of the subroutine.

(c) To your code, add a main program that will load the X register with the correct string
address and then call the subroutine count that you created in (a) and (b) above. You
do not need to set up the stack pointer – the stack has already been set up in memory
by the monitor program. Use an ORG directive to place you main program at a
suitable place in memory.

(d) Assemble and download your new program.

(e) Run the program. Does it still give the correct result?

(f) Append the output routines we used in Part (1) to your code and use them to print out
the values of the word count and character count.

