
CpE 390 Microprocessor Systems

Lab 4: Interrupts

1. Introduction

Interrupts allow a processor to perform multiple tasks simultaneously. An interrupt is
typically generated by a hardware source such as a UART, a timer or peripheral that is ready
to transfer data. When an interrupt is triggered, the main program is suspended and the
processor examines the Interrupt Vector Table (IVT) to find the memory address of the
Interrupt Service Routine (ISR) that has been designated to service this interrupt. Each
interrupt source is allocated a specific location in the IVT. Once the address of the ISR has
been determined, the processor will jump to that location.

An ISR is much like a regular subroutine, except that context switching is handled
automatically by the processor. Context switching is the process of saving all the registers on
the stack so that the operation of the main program can continue once the ISR has completed
its task. A “return from interrupt” instruction (rti) at the end of the ISR restores the CPU
registers to values they had before the interrupt and then returns control to the main program.

The other difference between an interrupt and a regular subroutine call is that an interrupt can
happen at any time, whereas a subroutine call only happens at well-defined places in the user
code. When writing an ISR, it’s important to remember that you do not know where in the
main program an interrupt will occur, and to make sure that unexpected behavior does not
occur. For this reason, you cannot use registers to communicate between an ISR and the main
program.

In this lab session, we will program the processor to do two tasks simultaneously. The main
program will read characters from the serial input (which comes from your keyboard) and
echo them to the serial output (which displays on the monitor output window). At the same
time, the Real-Time Interrupt system (RTI) will be set up to interrupt the processor at regular
intervals and toggle the outputs of the one of the processor’s parallel ports.

2. Main Program

(a) Enter the following code into the MiniIDE, assemble and load it into the processor:

SCOSR: EQU $00CC ; Serial Communications Status Register
SCODR: EQU $00CF ; Serial Communications Data Register
ESC: EQU $1B ; ASCII ESC character
CR: EQU $0D ; ASCII CR character (ENTER key)
LF: EQU $0A ; ASCII LF (line feed)

 ORG $4000
getch: brclr SCOSR, #$20, getch ; wait for RDRF bit to be set
 ldaa SCODR ; read character from serial input into A
 cmpa #ESC ; test for escape character
 beq done ; if found, return to monitor
 cmpa #CR ; if character is CR
 bne putch
 ldaa #LF ; change echo character to LF
putch: brclr SCOSR, #$80, putch ; wait for TDRE bit to be set
 staa SCODR ; echo character back to serial output
 bra getch ; get next character
done: swi

This main program is an (almost) infinite loop that echoes characters sent to the
microcontroller by the MiniIDE serial terminal. We have not yet covered the serial
communication interface in lectures. But briefly, the program waits for the Read Data
Register Full flag (RDRF) in the Serial Communications Status Register (SCOSR) to be set.
This indicates that an input character has been received by the interface. The program loads
this character into Accumulator A by reading the Serial Communications Data Register
(SCODR). Its then tests the character to see if it is an Escape (ESC) character. If it is an ESC
character, the program exits and returns to the monitor via an swi instruction. If it is a CR
character, it changes the echo character to be LF. This is done so that when you hit the
ENTER key, the output display will go to the next line. The program then checks the SCOSR
and waits for the Transmit Data Register Empty flag (TDRE) to be set indicating that the
output interface is ready to receive another character. The input character is then output
(echoed) to the serial terminal by writing to the SCODR. The program then loops back to get
the next character.

(b) Run the program. With the cursor in the monitor output window, type some characters and
verify that they are echoed back by the microcontroller. Also check that you can exit the
program by typing an ESC character.

3. Interrupt Service Routine

(a) Add the following constant declarations to the beginning of your program:

 PTT: EQU $240 ; Port T Data
 DDRT: EQU $242 ; Port T Direction Register
 CRGFLG: EQU $37 ; CRG Flag Register

 CRGINT: EQU $38 ; CRG Interrupt Register
 RTICTL: EQU $3B ; RTI Control Register

(b) Add the following initialization code to the beginning of your main program (i.e., right
before the getch label):

main: bset DDRT, $80 ; set up PT7 to be output
 bclr PTT, $80 ; set PT7 data to be ‘0’
 movw #rtisr, $0FF0 ; set up RTI interrupt vector
 movb #$4B, RTICTL ; set RTI timeout to 98,304 cycles
 bset CRGINT, $80 ; enable rti (local) interrupt
 cli ; enable (global) interrupts

This code sets bit 7 of Port T (PT7) to be an output pin and sets its value to zero. It then loads
the ISR address rtisr into the RTI user interrupt vector table location $0FF0. The code then
sets the time out period to be 12 × 213 = 98,304 crystal oscillator clock cycles by loading
$4B into the RTI Control register. Interrupts are then enabled by first setting the local RTI
Interrupt Enable bit in the CRG Interrupt Register and then turning on maskable interrupts by
clearing the I bit in the CSR Register.

(c) Add the following Interrupt Service Routine to the end of your program:

rtisr: bset CRGFLG, $80 ; clear RTI interrupt flag
 brset PTT, $80, ptclr ; if PT7=’1’, then clear
 bset PTT, $80 ; if not, then set PT7
 rti ; return from interrupt
ptclr: bclr PTT, $80 ; clear PT7
 rti ; return from interrupt

This is the code that runs whenever an interrupt occurs. It first clears the RTI interrupt flag
by setting the MSB of the CRG Flag register. This ensures that the RTI will not interrupt
again until it next “times out”. It then tests the current value of PT7, If it is currently a ‘1’,
then it clears it to ‘0’. Otherwise, it sets it to ‘1’. In other words, every time the interrupt
service routine runs, it toggles (complements) the output value PT7. Finally, an rti
instruction returns control to the main program.

(d) Assemble, load and run the program. Check that is still echoes characters typed into the
Monitor output window.

(e) The RTI module has been set up to interrupt the main program once every 98,304 crystal
oscillator clock cycles. The EVB boards use a 16 MHz crystal oscillator. This means that an
interrupt will occur every 6.144 ms. Each interrupt should toggle PT7. Connect the
oscilloscope to pin PT7. You should see a square wave with a period of (2 x 6.144) ≈ 12.3

ms.. Note that the microcontroller is generating this square wave and echoing characters
“simultaneously”. Sketch the waveform you see showing time and voltage values.

4. Switching the on-board LED
(a) On the EVB board, you will see two light emitting diodes, marked LED1 and LED2.

LED1 is connected to PS2 (pin 2 of Port S) and LED2 is connected to PS3. Modify your
program so that in addition to toggling PT7, it also toggles PS2. You will need the
following constants:

DDRS: EQU $24A ; Port S data direction register
PTS: EQU $248 ; Port S data register

Be careful not to disturb bits PS0 and PS1 – they are used to maintain the serial
communication between the EVP and your host PC.
You should see the LED1 now glowing dimly. It is actually turning on and off every 6.4
ms – too fast for your eye to see – so it looks like it is “half on”.

(b) Now slow down the flash rate by only changing the state of the LED once every 100
interrupts. You can do this by making a global variable to count the number of interrupts.
At the beginning of the main program, initialize its value to zero. Then every time an
interrupt occurs, increment the variable and check to see if it is equal to 100. If not, just
return from interrupt. If it is interrupt #100, then change the state of the LED and reset
the interrupt count to zero.

5. Communicating between the Main Program

Modify your program so that when you type the letter f (meaning fast), it speeds up the flashing
by changing the divide ratio to 50 and when you type the letter s (meaning slow) , it restores the
divide ratio to 100.
You can do this by setting up another named global variable which will hold the divide ratio (50
or 100). Initialize this to be 100. In the ISR, use this value to test the interrupt count. In the main
program, change this value whenever an ‘s’ or ‘f’ is typed.

6. Lab Report

Include your program(s) and execution results. Sketch the waveform you obtained from PT7
in part 3, showing voltage and time values.

