
CpE 390 Microprocessor Systems

Lab 7: Asynchronous Serial I/O

1. Introduction

Serial communications is the transfer of data, one bit at a time, over a communications
channel. Serial communications can either be synchronous or asynchronous. In synchronous
communications, we send an explicit clock signal with the data. In asynchronous
communications, we format the serial data in such a way that the clock in implicitly
embedded in the serial data signal. The 68HC12 microcontroller contains on-chip support for
both synchronous (e.g. SPI, I2C) and asynchronous (RS-232) serial communications. In this
lab, we will be using the asynchronous RS-232 communications link (a link that has already
been established to allow the MiniIDE software on the PC to communicate with the EVB
board.

The figure above illustrates the signals produced when data is transmitted across an RS-232
serial connection. When no data is being transmitted, the line is said to be idle. In this state, it
is held ‘high’. When data is transferred, a START bit (which is always ‘low’) precedes the
data to signal to the receiver that a data byte is following. The data is sent LS Bit first. The
last (MS Bit) may be a parity bit to allow error detection at the receiving end. After the parity
bit, a STOP bit (which is always ‘high’) returns the line to its idle state, ready to transmit the
next byte.

Serial I/O on the 68HC12 is performed by the Serial Communication Interface (SCI) module.
The SCI is controlled, through software, by a number of registers. These registers are special
memory locations that transfer data to and from hardware. There are three types of registers
used in a peripheral interface: (i) control registers for determining the operation of the
peripheral (ii) status registers which tell us the current state of the peripheral and (iii) data
registers through which you can send and receive data.

There are two separate serial communication ports on the 68HC12: SCI0 and SCI1. We will
be using SCI0. The registers associated with SCI0 are:

SCI0BDH EQU $00C8 ; high byte of SCI0 baud rate control register
SCI0BDL EQU $00C9 ; low byte of SCI0 baud rate control register

SCI0CR1 EQU $00CA ; SCI0 Control Register 1
SCI0CR2 EQU $00CB ; SCI0 Control Register 2
SCI0SR1 EQU $00CC ; SCI0 Status Register 1
SCI0SR2 EQU $00CD ; SCI0 Status Register 2
SCI0DRH EQU $00CE ; high byte of SCI0 data register
SCI0DRL EQU $00CF ; low byte of SCI0 data register

SCI0DRH is only needed when sending or receiving 9-bit data (9 data bits plus parity). When
using 8-bit data (7 data bits plus parity), only the SCI0DRL data register is used.

The baud rate and control registers of the SCI0 port have already been set up by the
DBUG12 monitor to allow communication with the MiniIDE software on the PC. You will
not need to modify these registers in order to use the SCI0 to perform simple serial I/O.

2. Procedure

(a) Use the monitor program to examine the contents of the SCI0 baud rate and control
registers. You can find a detailed description of the meaning of the various fields of these
registers in your lecture notes and/or text-book. Explain the settings that have already
been programmed into these registers by the DBUG12 monitor.

(b) Write a program to be run on your demo board. You may use the input-output routines
that were given as part of the lecture notes. They are also reproduced in Appendix A.

The program and the user should interact as follows:

1. The program outputs the message “Please enter your name:” and waits for the user
to enter his or her name followed by a CR (ENTER).

2. The program then outputs the message “Please enter your age:” and waits for the
user to enter his or her age followed by a CR (ENTER).

3. The program outputs the message “Please enter your height in inches:” and waits
for the user to enter his or her height followed by a CR (ENTER). The program then
prints out the following message on the terminal screen and exits:

 Your name is www
You are xxx years old

 You are yyy inches tall

4. In Appendix B, you will find two more routines:

The first asctobin converts a decimal ASCII string into an unsigned 8-bit integer.
The address of the ASCII string is passed in register X. The routine returns the
binary value of the integer in accumulator B.
The second bintoasc does the opposite – it converts an unsigned 8-bit integer into a
3 digit decimal ASCII string. You pass the binary value of the integer in
accumulator B and the address of where you want the routine to place the ASCII
string in register X.
Modify your program so that before it prints out your name, age and height, it first
uses the asctobin routine to convert your height into a binary value and stores it in a
named 8-bit memory location. You should then use the bintoasc routine to convert
this binary value back to ASCII and use the converted string when you output the
person’s height. This will, of course, give the same answer. This is just to check that
you are using these routines correctly.

5. Now that we have your height in inches as a binary value, you can perform
arithmetic on this value. Modify your program to convert your height in inches to
centimeters and your print-out sequence to look like:

Your name is www
You are xxx years old
You are zzz cms tall

6. Show your working program to the TA

Appendix A

SCI0SR1: EQU $00CC ;serial communications status register
SCI0DRL: EQU $00CF ;serial communications data register
CR: EQU $0D ; carriage return (ENTER) code
LF: EQU $0A ; line-feed code
BS: EQU $08 ; back-space code
WS: EQU $20 ; (white) space code

; Output the character passed in Accumulator A to the SCI0
putcSCI0: brclr SCI0SR1, $80, * ; wait for TDRE to be set
 staa SCI0DRL ; output the character
 rts

; Read a character from the SCI0 and return it in Accumulator A
getcSCI0: brclr SCI0SR1, $20, * ; wait for RDRF to be set
 ldaa SCI0DRL ; output the character
 rts

; Output a null terminated string to the SCI0. A pointer to the string is passed in register X
putsSCI0: ldaa 1, x+ ; get a character and increment pointer
 beq done ; end of string?
 jsr putcSCI0
 bra putsSCI0 ; go to next character
done: rts

; Read a CR terminated string from the SCIO and save it as a null terminated string at the
; location pointed to by register X. Echo all input characters and use the backspace character
; to erase previously input characters
getsSCI0: jsr getcSCI0 ; get a character from SCIO
 cmpa #CR ; is it carriage return?
 beq stend
 staa 0,x ; save the character
 jsr putcSCI0 ; echo the character
 cmpa #BS ; is it a backspace character?
 bne nc ; no, continue
 dex ; decrement buffer pointer
 ldaa #WS ; output space character (to erase previous)
 jsr putcSCI0
 ldaa #BS ; backspace over space character
 jsr putcSCI0
 bra getsSCI0 ; go get next character
nc: inx ; increment pointer
 bra getsSCI0
stend: ldaa #LF ; echo LF for CR
 jsr putcSCI0

 clr 0,x ;terminate string with NULL
 rts

Appendix B

; This routine converts a decimal ASCII string into an unsigned 8-bit integer.
; A pointer to the ASCC string is passed in X. The result in returned in B

asctobin: psha ; save A
 pshy ; save Y
 ldy #0 ; initialize value to zero
abloop: ldaa 1,X+ ; get next ascii char
 cmpa #$30 ; check for numeric character
 blo abdone ; if char<'0', then go to next char
 cmpa #$39
 bhi abdone ; if char>'9', then go to next char
 suba #$30 ; convert from ascii to binary
 psha ; temp save value on stack
 tfr Y, B ; mov accum value to B
 ldaa #10
 mul ; mult accum value in B by 10
 tfr D, Y ; and store back in Y
 pulb ; restore value of new char
 aby ; and add to accum value in Y
 bra abloop ; go to next character
abdone: tfr Y, B ; move result into B
 puly ; restore registers
 pula
 rts ; and return

; This routine converts an 8-bit unsigned integer into a decimal ASCII string
; The 8-bit value is passed in B.
; A pointer to where the routine should form the string should be passed in X.

bintoasc: psha ; save A
 pshy ; save Y
 tfr X, Y ; use Y as pointer register
 ldaa #0 ; clear MSByte of D
 ldx #10
 idiv ; divide by 10
 addb #$30 ; convert remainder to ascii
 stab 2, Y ; store ones Digit
 tfr X, D ; move quotient to D

 ldx #10
 idiv ; divide by 10
 addb #$30 ; convert remainder to ascii
 stab 1,Y ; store tens digit
 tfr X, D ; move quotient to D
 addb #$30 ; convert to ascii
 stab 0, Y ; store hundreds digit
 clr 3, Y ; place NULL at end of string
 cmpb #$30 ; suppress leading zeros
 bne baexit
 movb #WS, 0,Y ; if hundreds digit='0', replace by space
 ldab 1,Y
 cmpb #$30
 bne baexit
 movb #WS, 1,Y ; if tens digit='0', replace by space
baexit: puly ; restore Y
 pula ; restore A
 rts

