CPE 390: Microprocessor Systems Spring 2018

Lecture 1 Introduction to Microprocessors

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

What is a microprocessor?

- Yes, but so much more than these...
- Traditional Computers
 - PCs, MACs, Linux, workstation, desktop, laptop, tablet etc.
 - account for < 1% of microprocessors manufactured each year
- Almost every electronic device employs one or more microprocessors to implement required functionality

Ubiquity of Embedded Microprocessors

All enabled by software running on embedded microprocessor

Why software implementation?

Why not implement functionality as a dedicated chip?

Application Specific Integrated Circuit	Software implementation on embedded microprocessor
High Performance	Much lower performance - orders of magnitude
Low Power	Much higher power
Low per-unit cost	Higher per-unit cost
Little flexibility – dedicated functionality	Functionality easily changed
Large upfront design cost	Low cost off-the-shelf components
Highly specialized design skills	Readily available programmers
Complex test & debug	Much simpler software debug
Huge redesign cost	Simple to modify program - even after product is sold
1-2 years from concept to market	Fast to market

What is a microprocessor?

 A microprocessor is the central processing unit (CPU) of a stored program digital computer implemented as a single chip integrated circuit.

- OK so what is a stored program digital computer?
- Let's start with what is a computer?
- A computer is machine that can be programmed to perform a set of logical & mathematical operations on data
- Earliest computers were mechanical

First Digital Computer: Babbage Difference Engine

(1832)

- Executed basic operations (add, sub, mult, div) in arbitrary sequences
- Operated in two-cycle sequence, "Store", and "Mill" (execute)
- Included features like pipelining to make it faster.
- Complexity: 25,000 parts.
- •Cost: £17,470 (in 1834!)

Electronic Computers: Analog or Digital?

- Electronic computers required invention of electronic amplifying device – vacuum tube
- During 1930's and '40's, two competing concepts for electronic computers:

Analog

- Data is input, output, stored and processed as continuous signal
 - voltage or current proportional to data value
- Pioneering work at MIT

Digital

- Data is input, output, stored and processed as finite length binary numbers
 - high or low voltages represent bit value of '1' and '0' respectively
- Pioneering work at U. of Pennsylvania

Analog Computers

$$y(t) = \frac{-1}{RC} \int_0^t x(t). dt$$

- Included amplifiers, potentiometers, switches, resistors, capacitors, voltage sources, meters etc.
- Programmed by patch cord interconnect
- Complex operation with just a few components
- Well suited to solving differential equations
 - weapons applications in 1940's and '50's
- Complexity ultimately limited by analog precision
- Program storage, retrieval and modification cumbersome

ENIAC – Early digital electronic computer (1946)

- 100 kHz clock
- 20 words memory (~ 100 bytes)
- 5000 operations/sec

10 feet tall, 30 tons 1,000 square feet of floor- space

More than 70,000 resistors

10,000 capacitors

6,000 switches

18,000 vacuum tubes

Required 150 kilowatts of power

Programmed via switches and patch cables

Stored Program Digital Computer

- Turing (1936) proposed idea of a computing engine that:
 - could solve arbitrarily complex problems using a small set of primitive operations
 - use a single memory to store both data and instructions
 - instructions would determine sequence of operations to be performed
- Van Neumann (1945) proposed an architecture for this concept:

- that could be read, modified and written
- separation of instructions from CPU that distinguishes a stored program computer from a general finite state machine
- This was a revolutionary concept!

Computer Hardware Organization

Concept evolved into well known digital computer architecture:

Evolution of Digital Computers

High level architecture evolved slowly while underlying technology rapidly got smaller, faster and more power efficient:

- Early 1950's: vacuum tubes
 - UNIVAC, IBM 701

- Late 1950's: transistors
 - IBM 1401, CDC 6600

- Late 1960's; integrated circuits
 - IBM 360, DEC PDP-8

First Microprocessor: 4004

- Next step: integrate a complete CPU on a single chip
- 1971: Ted Hoff at Intel designs the first microprocessor.

Some 4004 Spec's:

- 4-bit internal & external busses
- 8/16 bit instructions
- Separate instruction & data memory spaces
 - 1k instruction
 - 4k data
- 16 4-bit registers
- 4-bit BCD and binary arithmetic
- 740 kHz clock
- 10.8 μs instruction cycle (8 clock cycles)
- 2,300 transistors
- 10 μm NMOS process

Evolution of Microprocessor 1974-2015

High Performance

- 32/64 bit (int & FP)
- Multicore/multithreaded
- On-chip caches
- Pipelined, predictive
- 2-5 GHz clock
- 50-150 W
- \$200-\$400

2% market volume 50% market value

Low Cost, Low Power

- 8/16 bit
- On-chip RAM, flash
- On-chip peripherals
- 6-8 I/O pins
- 10-20 MHz clock
- < 500 mW
- < \$1

Some Definitions

- Microprocessor is a single-chip implementation of the central processing unit (CPU) of a stored program digital computer
 - CPU contains data-path (ALU + registers) and control unit
- Microcomputer is a computer with a microprocessor as its CPU
 - may include other chips for memory, I/O, clock etc.
- Microcontroller is a single chip microcomputer
 - usually includes memory and I/O
 - timers, serial communications, A/D, D/A, DMA, software debug, etc.

One More Definition

- Embedded System is a special purpose computer system (HW and SW) designed to perform some specific function
 - Unlike general purpose computer, performs few predefined tasks with well defined requirements and limitations
 - Usually includes task specific hardware (peripherals)
 - Often implemented using microcontroller
 - Applications range from small portable (digital watch, coffee maker, MP3 player) to large dedicated systems (power plant controller)
 - Often significant power constraints and real-time performance constraints
 - interacts directly with environment
 - Software usually stored in non-volatile media and known as firmware