CPE 390: Microprocessor Systems

Spring 2018

Lecture 1
 Introduction to Microprocessors

Bryan Ackland
Department of Electrical and Computer Engineering Stevens Institute of Technology

Hoboken, NJ 07030

What is a microprocessor?

- Yes, but so much more than these...
- Traditional Computers
- PCs, MACs, Linux, workstation, desktop, laptop, tablet etc.
- account for < 1\% of microprocessors manufactured each year
- Almost every electronic device employs one or more microprocessors to implement required functionality

Ubiquity of Embedded Microprocessors

Why software implementation?

- Why not implement functionality as a dedicated chip?

Application Specific Integrated Circuit	Software implementation on embedded microprocessor
High Performance	Much lower performance - orders of magnitude Low Power
Low per-unit cost	Higher per-unit cost
Little flexibility - dedicated functionality	Functionality easily changed power
Large upfront design cost	Low cost off-the-shelf components
Highly specialized design skills	Readily available programmers
Complex test \& debug	Much simpler software debug
Huge redesign cost	Simple to modify program - even after product is sold
1-2 years from concept to market	Fast to market

What is a microprocessor?

- A microprocessor is the central processing unit (CPU) of a stored program digital computer implemented as a single chip integrated circuit.
- OK - so what is a stored program digital computer?
- Let's start with what is a computer?
- A computer is machine that can be programmed to perform a set of logical \& mathematical operations on data
- Earliest computers were mechanical

First Digital Computer: Babbage Difference Engine

(1832)

-Executed basic operations (add, sub, mult, div) in arbitrary sequences
-Operated in two-cycle sequence, "Store", and "Mill" (execute)
-Included features like pipelining to make it faster.
-Complexity: 25,000 parts.
-Cost: £17,470 (in 1834!)

Electronic Computers: Analog or Digital?

- Electronic computers required invention of electronic amplifying device - vacuum tube
- During 1930's and ‘40's, two competing concepts for electronic computers:

Analog

- Data is input, output, stored and processed as continuous signal
- voltage or current proportional to data value
- Pioneering work at MIT

Digital

- Data is input, output, stored and processed as finite length binary numbers
- high or low voltages represent bit value of ' 1 ' and ' 0 ' respectively
- Pioneering work at U . of Pennsylvania

Analog Computers

- Included amplifiers, potentiometers, switches, resistors, capacitors, voltage sources, meters etc.
- Programmed by patch cord interconnect
- Complex operation with just a few components
- Well suited to solving differential equations
- weapons applications in 1940's and '50's
- Complexity ultimately limited by analog precision
- Program storage, retrieval and modification cumbersome

ENIAC - Early digital electronic computer (1946)

- 100 kHz clock
- 20 words memory
(100 bytes)
- 5000 operations/sec

10 feet tall, 30 tons 1,000 square feet of floor- space
More than 70,000 resistors
10,000 capacitors
6,000 switches
18,000 vacuum tubes
Required 150 kilowatts of power
Programmed via switches and patch cables

Stored Program Digital Computer

- Turing (1936) proposed idea of a computing engine that:
- could solve arbitrarily complex problems using a small set of primitive operations
- use a single memory to store both data and instructions
- instructions would determine sequence of operations to be performed
- Van Neumann (1945) proposed an architecture for this concept:

- that could be read, modified and written
- separation of instructions from CPU that distinguishes a stored program computer from a general finite state machine
- This was a revolutionary concept!

Computer Hardware Organization

- Concept evolved into well known digital computer architecture:

Evolution of Digital Computers

High level architecture evolved slowly while underlying technology rapidly got smaller, faster and more power efficient:

- Early 1950's: vacuum tubes
- UNIVAC, IBM 701
- Late 1950's: transistors
- IBM 1401, CDC 6600

- Late 1960's; integrated circuits
- IBM 360, DEC PDP-8

First Microprocessor: 4004

- Next step: integrate a complete CPU on a single chip
- 1971: Ted Hoff at Intel designs the first microprocessor.

Some 4004 Spec's:

- 4-bit internal \& external busses
- 8/16 bit instructions
- Separate instruction \& data memory spaces
- 1k instruction
- 4k data

- 16 4-bit registers
- 4-bit BCD and binary arithmetic
- 740 kHz clock
- $10.8 \mu \mathrm{~s}$ instruction cycle (8 clock cycles)
- 2,300 transistors

- $10 \mu \mathrm{~m}$ NMOS process

Evolution of Microprocessor 1974-2015

High Performance

- 32/64 bit (int \& FP)
- Multicore/multithreaded
- On-chip caches
- Pipelined, predictive
- 2-5 GHz clock
- 50-150 W
- \$200-\$400

2\% market volume

Low Cost, Low Power

- 8/16 bit
- On-chip RAM, flash
- On-chip peripherals
- 6-8 I/O pins
- $10-20 \mathrm{MHz}$ clock
- < 500 mW
- < \$1

Some Definitions

- Microprocessor is a single-chip implementation of the central processing unit (CPU) of a stored program digital computer
- CPU contains data-path (ALU + registers) and control unit
- Microcomputer is a computer with a microprocessor as its CPU
- may include other chips for memory, I/O, clock etc.
- Microcontroller is a single chip microcomputer
- usually includes memory and I/O
- timers, serial communications, A/D, D/A, DMA, software debug, etc.

One More Definition

- Embedded System is a special purpose computer system (HW and SW) designed to perform some specific function
- Unlike general purpose computer, performs few predefined tasks with well defined requirements and limitations
- Usually includes task specific hardware (peripherals)
- Often implemented using microcontroller
- Applications range from small portable (digital watch, coffee maker, MP3 player) to large dedicated systems (power plant controller)
- Often significant power constraints and real-time performance constraints
- interacts directly with environment
- Software usually stored in non-volatile media and known as firmware

