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Input/Output

• So far, we have only considered programs that do 
computation on data stored in memory
– For a microprocessor to perform a useful task, it must interact with 

the outside world
• Input/Output (I/O) devices (peripherals) are electronic 

components that facilitate  the exchange of data between 
the microprocessor and its external environment
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Input Devices
Keyboard

Mouse
Switches

A/D converter
Push-button

Real-time clock

Output Devices
Display
Printer
LEDs

7-segment display
D/A converter

Speaker

I/O Devices
Hard disk
Ethernet
Timers

USB port
Co-processor

Bluetooth



Two Common I/O Schemes

• Isolated I/O
– Dedicated instructions for I/O operations
– Separate address space for I/O devices
– I/O devices do not occupy limited memory address space
– I/O address decoder can be simplified because address space is 

much smaller
– Example: Intel x86 architecture

• Memory Mapped I/O
– I/O devices use same address & data bus as memory
– Can use same instructions used to access memory
– Much more flexibility in accessing I/O devices
– More susceptible to programming errors (confusing memory and 

I/O addresses)
– Example: HCS12 architecture 3



Memory Mapped I/O

• Speed and electrical characteristics of I/O devices are 
different from CPU
– usually much slower than the CPU
– cannot connect them directly (like memory)

• I/O devices usually attached to address & data buses 
through an I/O interface
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I/O Interface

• I/O interface acts as a buffer between I/O device 
and CPU

• Has data pins connected to microprocessor data 
bus and I/O port pins connected to I/O device

• Has “enable” pin which, when asserted, allows 
the interface to respond to a data transfer 
request

• Each I/O interface contains registers that 
provide:
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data bus

I/O
Interface

EN

to output
device

– data buffering (holds data until ready to be transferred)
– control (e.g. allows CPU to determine data direction)
– status (e.g. lets CPU know when data is ready)
– each register appears to CPU as a memory location that can 

be read and/or written



HCS12 I/O Interface

• HCS12 is more than a microprocessor – it’s a 
microcontroller
– CPU + on-chip memory + on-chip I/O devices and interfaces

• On HCS12, I/O interfaces are called I/O Ports
• HCS12 devices may have anywhere from:

– 48-144 I/O signal pins
– connected to the CPU via 3-12 on-chip I/O ports

• Most I/O pins on HCS12 are dual function
– can function as simple parallel I/O port pin OR
– as I/O pin of dedicated peripheral, for example:
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HCS12 Pinout Example
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HCS12 I/O Ports
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Port 
Name #pins Pin Names

Data
Register 
Name

Associated
Peripheral Function

A 8 PA7~PA0 PTA Address & Data Bus
B 8 PB7~PB0 PTB Address & Data Bus
E 8 PE7~PE0 PTE Bus control & Interrupt
H 8 PH7~PH0 PTH Expanded address
J 8 PJ7~PJ0 PTJ SPI Serial Interface
K 8 PK7~PK0 PTK Expanded address
M 8 PM7~PM0 PTM CAN and I2C
P 8 PP7~PP0 PTP PWM & SPI
S 8 PS7~PS0 PTS Serial Interface
T 8 PT7~PT0 PTT Timer

AD0,1 16 PAD15~PAD0 PORTAD0,1 A/D Converter(s)



I/O Port Addresses

• Number of registers associated with each I/O port
• Each register has a separate (memory) address
• These registers are assigned addresses (mapped)  in the 

range $0000 ~ $03FF
• For example:

– data register associated with Port A is assigned address $0000
– data register associated with Port B is assigned address $0001

• Rather than having to remember all these addresses, a 
name is associated with each I/O register

• These names can be found in file hcs12.inc
– included on CD in text book

• Can be made available in your assembly program by 
adding this line at the beginning of your .asm file:
INCLUDE “hcs12.inc” 9



First Few Lines of “hcs12.inc”

10

PORTA     equ 0   ; port a = address lines a8 - a15
PTA equ 0 ; alternate name for PORTA
PORTB     equ 1   ; port b = address lines a0 - a7
PTB equ 1 ; alternate name for PORTB
DDRA      equ 2   ; port a direction register
DDRB      equ 3   ; port b direction register

PORTE     equ 8   ; port e = mode, irq and control signals
PTE equ 8 ; alternate name for PORTE
DDRE      equ 9   ; port e direction register
PEAR      equ $a  ; port e assignments
MODE      equ $b  ; mode register
PUCR      equ $c  ; port pull-up control register
RDRIV     equ $d  ; port reduced drive control register
EBICTL equ $e  ; e stretch control

INITRM    equ $10 ; ram location register
INITRG    equ $11 ; register location register
INITEE    equ $12 ; eeprom location register
MISC      equ $13 ; miscellaneous mapping control



Simple I/O: Ports A and B

• Ports A and B are simple 8-bit parallel I/O ports
– Each bit can be individually set to be an input or output
– Two registers associated with each of these ports:

• Data Register: PTA and PTB
– use normal instructions to move data to and from these registers 

as if they were memory locations, e.g:

movb #$35, PTA ;outputs $35 to Port A

ldaa PTB ;inputs a byte from Port B into acc. A

• Data Direction Register: DDRA and DDRB
– sets direction of each bit in data register (0 = input; 1 = output)

movb #$FF, DDRA ;configure Port A for output

movb #$AA, DDRB ;even pins for input, odd pins for output
11



Simple I/O: Interfacing with LEDs

• A light emitting diode (LED) is often a convenient way to 
display value of a single bit of information

• LED is illuminated by passing a few mA of forward current 
through the diode
– typically this requires a forward bias of 1-2V
– usually driven by a voltage source and current limiting resistor
– port I/O pin can be used as the voltage source

• Buffered drive used for higher power LEDs 12
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Example: Bouncing LED Display

• Use the HCS12 Port B to drive eight LEDs. Light each of 
them half a second in turn in one direction, and then in the 
other direction. (Assume you have a 100ms time delay subroutine 
available for use)
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Example: Bouncing LED Display - Code
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include hcs12.inc

ORG $800
led_tab: DC.B $80,$40,$20,$10,$08,$04,$02

DC.B $01,$02,$04,$08,$10,$20,$40

lpcnt: DS.B 1 ;pattern counter

ORG $4000
movb #$FF, DDRB ; configure port B for output

forever: movb #14, lpcnt ; initialize pattern count
ldx #led_tab ; X is pointer to pattern

led_lp: movb 1, x+, PTB ; turn on one LED
ldy #5 ;wait for 500 mS
jsr delayby100ms
dec lpcnt ;end of pattern table?
bne led_lp
bra forever ;start from beginning



Interfacing with DIP Switches

• Pull-up resistors hold input at ‘1’ unless connected by 
switch to ground (‘0’)

• To read data into accumulator A:
movb #0, DDRA ;configure port A for input
ldaa PTA ;read into accumulator A 15
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Interfacing with DIP Switches

Write a program starting at address $4000 that would 
allow us to use the 8 switches on port A to individually 
control the 8 LEDs on port B
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Interrupts
• What is an interrupt?

– A special event that requires the CPU to stop normal program 
execution and perform some service related to the event

– The source of the interrupt can be internal to the CPU (e.g. 
illegal op-code, divide-by-0), an on-chip peripheral (e.g. timer) 
or external to the chip (e.g. I/O completion, low-battery signal)

• Why are interrupts used?
– Allow processor to respond to events that cannot easily be 

anticipated by normal program without huge amount of 
condition and status checking that would make the code very 
slow and difficult to understand/debug

• Function of interrupts include:
– Coordinating I/O activities (without polling of I/O devices)
– Performing time critical operations in a real-time system
– Providing a graceful way to exit from errors
– Reminding the CPU to perform routine tasks (e.g. updating 

real-time clock, scheduling in an operating system) 17



Interrupt Sequence

• What happens when an interrupt occurs?
1. CPU completes execution of current instruction
2. Disables interrupts (to prevent a further interrupt)
3. Saves current value of program counter on stack
4. Saves current CPU status on stack

– includes accumulators, registers and CCR
5. Identifies source of interrupt and resolves starting address 

of interrupt service routine that services that source
6. Executes interrupt service routine

– until it encounters an rti (return from interrupt) instruction
7. Restores CPU status from stack
8. Restores program counter from stack

– which allows resumption of interrupted program
9. Enables interrupts

18



Stack Order on Interrupt

• When the CPU services an interrupt, it automatically saves 
all CPU registers (except SP):

• Return from interrupt rti instruction terminates the interrupt 
service routine
– restores all CPU registers
– continue to execute interrupted program unless there is another 

interrupt pending

• How can an ISR communicate with main program?
19

[CCR]
[A]
[B]
[X]
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SP + 3
SP + 2
SP + 1
SP 



Maskable Interrupts

• A maskable interrupt is one which the normal program 
can choose to ignore

• A maskable interrupt source must be enabled by the 
software before it can interrupt the CPU
– by setting an interrupt enable flag

• A maskable interrupt can be disabled at any time by the 
software

• Two levels of interrupt enabling capability: 
– global interrupt flag ( in the CPU which enables/disables all 

maskable interrupts)
– local interrupt flag (in the I/O interface that enables/disables a 

particular interrupt source)

• Examples include the 𝐼𝐼𝐼𝐼𝐼𝐼 pin and all on-chip peripheral 
function interrupts 20



Non-Maskable Interrupts

• A non-maskable interrupt is one which cannot be ignored 
(disabled) by the normal program 

• There are three non-maskable interrupts:
– external  X𝐼𝐼𝐼𝐼𝐼𝐼 pin
– unimplemented op-code trap
– software interrupt (swi) instruction

• There are also three exceptions (similar to interrupts) 
that are non-maskable
– power-on reset
– external reset (the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 pin)
– computer operating properly (COP) reset – a watchdog timer
– clock monitor reset

• Exceptions do not normally return to interrupted program
• Why would you want to have an interrupt be non-

maskable? 21



Maskable:
- IRQ
- Real-Time Interrupt
- Timer Channel
- Timer Overflow
- Pulse Accumulator 

Overflow
- Pulse Accumulator 

Edge Detect
- Serial Peripheral 

Interface (SPI)
- Serial Communications 

Interface (SCI)
- Analog-to-Digital (ATD)
- Key Wake-Up

HCS12 Exception Processing System

22

Exceptions

Resets:
- Power-on reset
- External reset
- Computer Operating 

Properly (COP) reset
- Clock monitor reset

Non-maskable:
- Unimplemented 

Opcode Trap
- Software Interrupt 

Instruction (SWI)
- XIRQ

Interrupts



Interrupt Vector Table

• How does the CPU know where to find the appropriate 
interrupt service routine?

• Associated with each interrupt source is an interrupt 
vector – the starting address of the service routine

• These vectors are stored in the interrupt vector table
• Some different approaches to determining vectors:

– Predefined vectors (no need for table) – e.g. Intel 8051
– Allocate table to a predefined memory location  - e.g. HCS12
– Interrogate interrupting hardware for an index or pointer to 

service routine (e.g. Freescale 68000, Intel x86)
• HCS12 locates interrupt vector table at memory 

addresses $FF8A – $FFFE 
– each vector requires two bytes
– in lab sessions, this is mapped down to $0F8A – $0FFE 

23



Sample of Interrupt Vector Table
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Vector
Address Interrupt Source CCR

Mask
$FFFE Reset none
$FFFC Clock monitor none
$FFFA COP reset none
$FFF8 Bad opcode none
$FFF6 SWI none
$FFF4 XIRQ X
$FFF2 IRQ I
$FFF0 Real-Time Interrupt I
$FFEE ECT channel 0 I
$FFEC ECT channel 1 I
$FFEA ECT channel 2 I
$FFE8 ECT channel 3 I
$FFE6 ECT channel 4 I

Vector
Address Interrupt Source CCR

Mask
$FFE4 ECT channel 5 I
$FFE2 ECT channel 6 I
$FFE0 ECT channel 7 I
$FFDE ECT overflow I
$FFDC Pulse accA overflow I
$FFDA Pulse accA edge I
$FFD8 SPI0 I
$FFD6 SCI0 I
$FFD4 SCI1 I
$FFD2 ATD0 I
$FFD0 ATD1 I
$FFCE Port J I
$FFCC Port H I

see Table 6.1 in Textbook for complete table



Interrupt Priority

• What happens if two sources interrupt at the same time? 
Who should get service?

• Interrupts are prioritized according to their vector table 
address.
– Higher the vector table address, the higher the priority
– Highest priority interrupt is the hardware reset at $FFFE

• Can raise any one of the maskable interrupts to the 
highest priority (of the maskable interrupts) by setting the 
HPRIO register to the least significant 8-bits of that 
interrupt’s vector table address.
– relative priorities of other sources remain the same

• If there are multiple interrupts pending:
– CPU first services highest priority interrupt
– Once this has been serviced, the rti instruction will then transfer 

control to next highest priority interrupt 25



Interrupt Programming

• Three steps in adding interrupt service to a program:
1. Write the interrupt service routine. 

• Can be thought of as a (asynchronous) subroutine call. 
• Keep as short as possible to minimize overhead – only do 

those tasks that have to be done immediately.
• May or may not return to interrupted program (with rti

instruction) depending on nature of interrupt
2. Initialize interrupt vector table

• Load starting address of interrupt service routine into 
appropriate vector table address

3. Enable the interrupts at run-time

• An interrupt incurs significant overhead in saving and 
restoring the CPU registers & accumulators
– Minimum overhead is 17 to 20 E-clock cycles. With an 8 MHz 

E-clock, this is a little over 2 µs. 26



IRQ Interrupt

• 𝑰𝑰𝑹𝑹𝑰𝑰 is an external maskable interrupt on HCS12
• Maskable interrupts (i.e. 𝐼𝐼𝐼𝐼𝐼𝐼 and all peripheral function 

interrupts) are globally enabled by clearing the I-bit in the CCR

• The I-bit is set (i.e. interrupts are disabled) at system reset
• The I-bit can be cleared (i.e. interrupts enabled) or set 

(interrupts disabled) at any time by user software
• When an interrupt occurs, the I-bit is automatically set by the 

processor to prevent further interrupts
– The I-bit is then normally cleared when the rti instruction restores 

the CCR

27
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Interrupt Control Register

• The operation of the 𝑰𝑰𝑹𝑹𝑰𝑰 interrupt is further controlled by the 
Interrupt Control Register IRQCR. It has two active control bits:

IRQEN: IRQ enable bit
1 = IRQ pin interrupt enabled (reset condition)
0 = IRQ pin interrupt disabled
This is the local interrupt enable for IRQ. It does not affect 
other maskable interrupts

IRQE: IRQ edge-sensitive bit
1 = IRQ responds only to falling edge
0 = IRQ responds to low (‘0’) level (reset condition)

 Level sensitive IRQ allows multiple sources to be connected to this 
pin (IRQ pin in internally pulled high), but need to make sure that 
signal is de-asserted before returning from interrupt

 Edge sensitive IRQ means we don’t have to worry about duration of 
IRQ pulse but makes the pin more noise sensitive

28

IRQE IRQEN 0 0 0 0 0 0
7 6 5 4 3 2 1 0



Picturing an Interrupt
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Interrupts have been enabled by 
clearing I bit in CCR (global) and 
setting IRQCR to $C0 (local)
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Example: Interrupt Driven Bouncing LEDs

• Suppose we have a 2 Hz digital square wave connected to pin 
𝐼𝐼𝐼𝐼𝐼𝐼 of an HCS12 microcontroller. Rewrite the “Bouncing LEDs” 
code to use this waveform to time the updating of the LED 
pattern, rather than using a software time delay.

30

include hcs12.inc
ORG $800

pindex: DS.B 1 ;pattern index
led_tab: DC.B $80,$40,$20,$10,$08,$04,$02

DC.B $01,$02,$04,$08,$10,$20,$40

ORG $4000
movw #IRQIS, UserIRQ ; set up interrupt vector
movb #$FF, DDRB ; configure port B for output
movb #0, pindex ; initialize pattern index
movb led_tab, PTB ; output initial pattern
movb #$C0, IRQCR ; enable IRQ and edge triggering
cli ; enable maskable interrupts

forever: bra forever ; wait for interrupt



Example: Interrupt Service Routine
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;Interrupt Service Routine

IRQIS: ldab pindex ; get current index
incb ; increment index
cmpb #14 ; are we past end of table?
bne pdxok
clrb ; if so, reset index

pdxok: stab pindex ; save updated index
ldx #led_tab ; X is table address
movb b, x, PTB ; send indexed pattern to LEDs
rti ; return to main program



XIRQ Interrupt

• 𝑿𝑿𝑰𝑰𝑹𝑹𝑰𝑰 is an external level sensitive non-maskable interrupt 
• The 𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼 is enabled by clearing the X-bit in the CCR

• The X-bit is set (i.e. interrupt is disabled) at system reset
• The X-bit can be cleared (i.e. interrupt enabled) at any time by 

user software
• Once cleared, the X-bit cannot be set by user software

– in other words, once enabled, this interrupt cannot be disabled

• When an 𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼 interrupt occurs, both the X-bit and I-bit are 
automatically set by the processor to prevent further interrupts
– They are normally restored to their previous values when the rti

instruction restores the CCR
– Note that the X-bit is not set when a maskable interrupt occurs
– The 𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼 pin can interrupt a maskable interrupt service routine32
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Other Non-maskable Interrupts

• Unimplemented Opcode Trap
– An opcode uses 1 or 2 bytes of memory – 511 possible opcodes
– Of these, only 309 of these are used
– If PC encounters an unused code, interrupt occurs through vector 

address $FFF8:$FFF9
– Usually does not make sense to return from such an interrupt

• Software Interrupt Instruction
– This are commonly used by operating system to implement a 

system call or debug monitor to insert a breakpoint into user code
– In case of breakpoint, software interrupt causes transfer of control 

to monitor program which allows a user to examine memory and 
registers

– Can continue interrupted program by executing an rti instruction

33



Computer Operating Properly (COP)

• COP is a free-running watch-dog timer
– checks that user programming is still running correctly
– will time-out and generate interrupt if not regularly re-armed
– used to automatically re-start code following software crash

• When COP is enabled, user program must write the sequence 
{$55, $AA} into the ARMCOP register on a regular basis
– Failure to write the sequence within the specified time or writing 

any other code to ARMCOP will generate COP interrupt which 
resets CPU

• Time-out period can be set using register COPCTL
– anywhere from 214 to 224 crystal oscillator clock cycles
– 4 msec to 4 sec with a 4MHz crystal
– COPCTL register described in Fig. 6.17 of text

34



Real-Time Interrupt

• The Real-Time Interrupt (RTI) is an on-chip peripheral that can 
be programmed to interrupt CPU at regular intervals.
– used to periodically update I/O, time multiplex displays, maintain 

real-time clock, activate process scheduler etc.
– uses three registers to set up and control interrupt sequence

• CRG Interrupt Enable Register (CRGINT)

35

RTIE 0 0 LCKIE 0 0 SCMIE 0

7 6 5 4 3 2 1 0

RTIE: Real-time clock interrupt enable (‘0’: disabled, ‘1’: enabled)

Note: CRGINT and CRGFLG are registers belonging to Clock and 
Reset Generation Unit (CRG). They control a number of clock and PLL 
features – we are only concerned with RTI functionality



Real-Time Interrupt Registers

• CRG Flag Register (CRGFLG)

• RTI Control Register (RTICTL)

36

RTIF PORF 0 LOCKIF LOCK TRACK SCMIF SCM

7 6 5 4 3 2 1 0

RTIF: Indicates RTI time-out has occurred. 
When RTIE =‘1’, an interrupt will occur when this flag is set. 
RTIF must be reset in ISR by writing a ‘1’ to it.

0 RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0

7 6 5 4 3 2 1 0

RTR[6:0]: selects interrupt period anywhere from 210 to 220 crystal 
oscillator clock periods



RTI Period (in units of OSC period)

37



Example: Real Time Clock

• Use the RTI facility to maintain a 24-hour real-time clock. Time 
should be maintained in three locations hours, mins and secs at 
locations $6000, $6001 and $6002 respectively. Assume crystal 
oscillator is 4.096 MHz

38

include hcs12.inc

ORG $6000
hours: DS.B 1 ; global time variables
mins: DS.B 1
secs: DS.B 1
RTC_cnt: DS.B 1 ; count 10ms interrupts

ORG $4000
movw #rtisr, UserRTI ; set up interrupt vector
movb #$39, RTICTL ; set RTI timeout to 40,960 cycles
movb #$80, CRGINT ; enable rti (local) interrupt
cli ; enable maskable interrupts
bra stuff ; go do useful work



Example: Real Time Clock ISR

39

;Interrupt Service Routine

rtisr: movb #$80, CRGFLG ; clear RTI interrupt flag
inc RTC_cnt ; increment index
ldaa #100
cmpa RTC_cnt ; check for 100 x 10ms
beq up_secs
rti

up_secs: clr RTC_cnt
inc secs ; increments secs
ldaa #60
cmpa secs ; check for 60 secs
beq up_mins
rti



Example: Real Time Clock ISR (cont.)

40

up_mins: clr secs
inc mins
cmpa mins ; check for 60 mins
beq up_hrs
rti

up_hrs: clr mins
inc hours
ldaa #24
cmpa hours ; check for 24 hours
bne done
clr hours

done: rti
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