
CPE 390: Microprocessor Systems
Spring 2018

Lecture 10
I/O and Interrupts

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

Input/Output

• So far, we have only considered programs that do
computation on data stored in memory
– For a microprocessor to perform a useful task, it must interact with

the outside world
• Input/Output (I/O) devices (peripherals) are electronic

components that facilitate the exchange of data between
the microprocessor and its external environment

2

Input Devices
Keyboard

Mouse
Switches

A/D converter
Push-button

Real-time clock

Output Devices
Display
Printer
LEDs

7-segment display
D/A converter

Speaker

I/O Devices
Hard disk
Ethernet
Timers

USB port
Co-processor

Bluetooth

Two Common I/O Schemes

• Isolated I/O
– Dedicated instructions for I/O operations
– Separate address space for I/O devices
– I/O devices do not occupy limited memory address space
– I/O address decoder can be simplified because address space is

much smaller
– Example: Intel x86 architecture

• Memory Mapped I/O
– I/O devices use same address & data bus as memory
– Can use same instructions used to access memory
– Much more flexibility in accessing I/O devices
– More susceptible to programming errors (confusing memory and

I/O addresses)
– Example: HCS12 architecture 3

Memory Mapped I/O

• Speed and electrical characteristics of I/O devices are
different from CPU
– usually much slower than the CPU
– cannot connect them directly (like memory)

• I/O devices usually attached to address & data buses
through an I/O interface

4

Micro-
processor

data bus

Address
decoder

I/O
Interface

CE
I/O

Interface

CE
address

bus

to output
device

from input
device

I/O Interface

• I/O interface acts as a buffer between I/O device
and CPU

• Has data pins connected to microprocessor data
bus and I/O port pins connected to I/O device

• Has “enable” pin which, when asserted, allows
the interface to respond to a data transfer
request

• Each I/O interface contains registers that
provide:

5

data bus

I/O
Interface

EN

to output
device

– data buffering (holds data until ready to be transferred)
– control (e.g. allows CPU to determine data direction)
– status (e.g. lets CPU know when data is ready)
– each register appears to CPU as a memory location that can

be read and/or written

HCS12 I/O Interface

• HCS12 is more than a microprocessor – it’s a
microcontroller
– CPU + on-chip memory + on-chip I/O devices and interfaces

• On HCS12, I/O interfaces are called I/O Ports
• HCS12 devices may have anywhere from:

– 48-144 I/O signal pins
– connected to the CPU via 3-12 on-chip I/O ports

• Most I/O pins on HCS12 are dual function
– can function as simple parallel I/O port pin OR
– as I/O pin of dedicated peripheral, for example:

6

Port T

Timer
Module

data
bus

PT0

PT7

I/O
pins

HCS12 Pinout Example

7

HCS12 I/O Ports

8

Port
Name #pins Pin Names

Data
Register
Name

Associated
Peripheral Function

A 8 PA7~PA0 PTA Address & Data Bus
B 8 PB7~PB0 PTB Address & Data Bus
E 8 PE7~PE0 PTE Bus control & Interrupt
H 8 PH7~PH0 PTH Expanded address
J 8 PJ7~PJ0 PTJ SPI Serial Interface
K 8 PK7~PK0 PTK Expanded address
M 8 PM7~PM0 PTM CAN and I2C
P 8 PP7~PP0 PTP PWM & SPI
S 8 PS7~PS0 PTS Serial Interface
T 8 PT7~PT0 PTT Timer

AD0,1 16 PAD15~PAD0 PORTAD0,1 A/D Converter(s)

I/O Port Addresses

• Number of registers associated with each I/O port
• Each register has a separate (memory) address
• These registers are assigned addresses (mapped) in the

range $0000 ~ $03FF
• For example:

– data register associated with Port A is assigned address $0000
– data register associated with Port B is assigned address $0001

• Rather than having to remember all these addresses, a
name is associated with each I/O register

• These names can be found in file hcs12.inc
– included on CD in text book

• Can be made available in your assembly program by
adding this line at the beginning of your .asm file:
INCLUDE “hcs12.inc” 9

First Few Lines of “hcs12.inc”

10

PORTA equ 0 ; port a = address lines a8 - a15
PTA equ 0 ; alternate name for PORTA
PORTB equ 1 ; port b = address lines a0 - a7
PTB equ 1 ; alternate name for PORTB
DDRA equ 2 ; port a direction register
DDRB equ 3 ; port b direction register

PORTE equ 8 ; port e = mode, irq and control signals
PTE equ 8 ; alternate name for PORTE
DDRE equ 9 ; port e direction register
PEAR equ $a ; port e assignments
MODE equ $b ; mode register
PUCR equ $c ; port pull-up control register
RDRIV equ $d ; port reduced drive control register
EBICTL equ $e ; e stretch control

INITRM equ $10 ; ram location register
INITRG equ $11 ; register location register
INITEE equ $12 ; eeprom location register
MISC equ $13 ; miscellaneous mapping control

Simple I/O: Ports A and B

• Ports A and B are simple 8-bit parallel I/O ports
– Each bit can be individually set to be an input or output
– Two registers associated with each of these ports:

• Data Register: PTA and PTB
– use normal instructions to move data to and from these registers

as if they were memory locations, e.g:

movb #$35, PTA ;outputs $35 to Port A

ldaa PTB ;inputs a byte from Port B into acc. A

• Data Direction Register: DDRA and DDRB
– sets direction of each bit in data register (0 = input; 1 = output)

movb #$FF, DDRA ;configure Port A for output

movb #$AA, DDRB ;even pins for input, odd pins for output
11

Simple I/O: Interfacing with LEDs

• A light emitting diode (LED) is often a convenient way to
display value of a single bit of information

• LED is illuminated by passing a few mA of forward current
through the diode
– typically this requires a forward bias of 1-2V
– usually driven by a voltage source and current limiting resistor
– port I/O pin can be used as the voltage source

• Buffered drive used for higher power LEDs 12

port
pin

Vcc

R2

(b) inverse
direct drive

port
pin

Vcc

(c) buffered
drive

R3

port
pin

(a) positive
direct drive

R1

𝑹𝑹𝟏𝟏,𝑹𝑹𝟐𝟐 ≈ 1-2 𝒌𝒌𝜴𝜴

Example: Bouncing LED Display

• Use the HCS12 Port B to drive eight LEDs. Light each of
them half a second in turn in one direction, and then in the
other direction. (Assume you have a 100ms time delay subroutine
available for use)

13

1.5 𝒌𝒌𝜴𝜴
PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

HCS12

Example: Bouncing LED Display - Code

14

include hcs12.inc

ORG $800
led_tab: DC.B $80,$40,$20,$10,$08,$04,$02

DC.B $01,$02,$04,$08,$10,$20,$40

lpcnt: DS.B 1 ;pattern counter

ORG $4000
movb #$FF, DDRB ; configure port B for output

forever: movb #14, lpcnt ; initialize pattern count
ldx #led_tab ; X is pointer to pattern

led_lp: movb 1, x+, PTB ; turn on one LED
ldy #5 ;wait for 500 mS
jsr delayby100ms
dec lpcnt ;end of pattern table?
bne led_lp
bra forever ;start from beginning

Interfacing with DIP Switches

• Pull-up resistors hold input at ‘1’ unless connected by
switch to ground (‘0’)

• To read data into accumulator A:
movb #0, DDRA ;configure port A for input
ldaa PTA ;read into accumulator A 15

Vcc

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

HCS12

SW DIP-8 10 𝒌𝒌𝜴𝜴

Interfacing with DIP Switches

Write a program starting at address $4000 that would
allow us to use the 8 switches on port A to individually
control the 8 LEDs on port B

16

Vcc

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

HCS12

SW DIP-8
10 𝒌𝒌𝜴𝜴

PB0
PB1
PB2
PB3
PB4
PB5

PB7
PB6

Interrupts
• What is an interrupt?

– A special event that requires the CPU to stop normal program
execution and perform some service related to the event

– The source of the interrupt can be internal to the CPU (e.g.
illegal op-code, divide-by-0), an on-chip peripheral (e.g. timer)
or external to the chip (e.g. I/O completion, low-battery signal)

• Why are interrupts used?
– Allow processor to respond to events that cannot easily be

anticipated by normal program without huge amount of
condition and status checking that would make the code very
slow and difficult to understand/debug

• Function of interrupts include:
– Coordinating I/O activities (without polling of I/O devices)
– Performing time critical operations in a real-time system
– Providing a graceful way to exit from errors
– Reminding the CPU to perform routine tasks (e.g. updating

real-time clock, scheduling in an operating system) 17

Interrupt Sequence

• What happens when an interrupt occurs?
1. CPU completes execution of current instruction
2. Disables interrupts (to prevent a further interrupt)
3. Saves current value of program counter on stack
4. Saves current CPU status on stack

– includes accumulators, registers and CCR
5. Identifies source of interrupt and resolves starting address

of interrupt service routine that services that source
6. Executes interrupt service routine

– until it encounters an rti (return from interrupt) instruction
7. Restores CPU status from stack
8. Restores program counter from stack

– which allows resumption of interrupted program
9. Enables interrupts

18

Stack Order on Interrupt

• When the CPU services an interrupt, it automatically saves
all CPU registers (except SP):

• Return from interrupt rti instruction terminates the interrupt
service routine
– restores all CPU registers
– continue to execute interrupted program unless there is another

interrupt pending

• How can an ISR communicate with main program?
19

[CCR]
[A]
[B]
[X]
[Y]

Return address SP + 7
SP + 5
SP + 3
SP + 2
SP + 1
SP

Maskable Interrupts

• A maskable interrupt is one which the normal program
can choose to ignore

• A maskable interrupt source must be enabled by the
software before it can interrupt the CPU
– by setting an interrupt enable flag

• A maskable interrupt can be disabled at any time by the
software

• Two levels of interrupt enabling capability:
– global interrupt flag (in the CPU which enables/disables all

maskable interrupts)
– local interrupt flag (in the I/O interface that enables/disables a

particular interrupt source)

• Examples include the 𝐼𝐼𝐼𝐼𝐼𝐼 pin and all on-chip peripheral
function interrupts 20

Non-Maskable Interrupts

• A non-maskable interrupt is one which cannot be ignored
(disabled) by the normal program

• There are three non-maskable interrupts:
– external X𝐼𝐼𝐼𝐼𝐼𝐼 pin
– unimplemented op-code trap
– software interrupt (swi) instruction

• There are also three exceptions (similar to interrupts)
that are non-maskable
– power-on reset
– external reset (the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 pin)
– computer operating properly (COP) reset – a watchdog timer
– clock monitor reset

• Exceptions do not normally return to interrupted program
• Why would you want to have an interrupt be non-

maskable? 21

Maskable:
- IRQ
- Real-Time Interrupt
- Timer Channel
- Timer Overflow
- Pulse Accumulator

Overflow
- Pulse Accumulator

Edge Detect
- Serial Peripheral

Interface (SPI)
- Serial Communications

Interface (SCI)
- Analog-to-Digital (ATD)
- Key Wake-Up

HCS12 Exception Processing System

22

Exceptions

Resets:
- Power-on reset
- External reset
- Computer Operating

Properly (COP) reset
- Clock monitor reset

Non-maskable:
- Unimplemented

Opcode Trap
- Software Interrupt

Instruction (SWI)
- XIRQ

Interrupts

Interrupt Vector Table

• How does the CPU know where to find the appropriate
interrupt service routine?

• Associated with each interrupt source is an interrupt
vector – the starting address of the service routine

• These vectors are stored in the interrupt vector table
• Some different approaches to determining vectors:

– Predefined vectors (no need for table) – e.g. Intel 8051
– Allocate table to a predefined memory location - e.g. HCS12
– Interrogate interrupting hardware for an index or pointer to

service routine (e.g. Freescale 68000, Intel x86)
• HCS12 locates interrupt vector table at memory

addresses $FF8A – $FFFE
– each vector requires two bytes
– in lab sessions, this is mapped down to $0F8A – $0FFE

23

Sample of Interrupt Vector Table

24

Vector
Address Interrupt Source CCR

Mask
$FFFE Reset none
$FFFC Clock monitor none
$FFFA COP reset none
$FFF8 Bad opcode none
$FFF6 SWI none
$FFF4 XIRQ X
$FFF2 IRQ I
$FFF0 Real-Time Interrupt I
$FFEE ECT channel 0 I
$FFEC ECT channel 1 I
$FFEA ECT channel 2 I
$FFE8 ECT channel 3 I
$FFE6 ECT channel 4 I

Vector
Address Interrupt Source CCR

Mask
$FFE4 ECT channel 5 I
$FFE2 ECT channel 6 I
$FFE0 ECT channel 7 I
$FFDE ECT overflow I
$FFDC Pulse accA overflow I
$FFDA Pulse accA edge I
$FFD8 SPI0 I
$FFD6 SCI0 I
$FFD4 SCI1 I
$FFD2 ATD0 I
$FFD0 ATD1 I
$FFCE Port J I
$FFCC Port H I

see Table 6.1 in Textbook for complete table

Interrupt Priority

• What happens if two sources interrupt at the same time?
Who should get service?

• Interrupts are prioritized according to their vector table
address.
– Higher the vector table address, the higher the priority
– Highest priority interrupt is the hardware reset at $FFFE

• Can raise any one of the maskable interrupts to the
highest priority (of the maskable interrupts) by setting the
HPRIO register to the least significant 8-bits of that
interrupt’s vector table address.
– relative priorities of other sources remain the same

• If there are multiple interrupts pending:
– CPU first services highest priority interrupt
– Once this has been serviced, the rti instruction will then transfer

control to next highest priority interrupt 25

Interrupt Programming

• Three steps in adding interrupt service to a program:
1. Write the interrupt service routine.

• Can be thought of as a (asynchronous) subroutine call.
• Keep as short as possible to minimize overhead – only do

those tasks that have to be done immediately.
• May or may not return to interrupted program (with rti

instruction) depending on nature of interrupt
2. Initialize interrupt vector table

• Load starting address of interrupt service routine into
appropriate vector table address

3. Enable the interrupts at run-time

• An interrupt incurs significant overhead in saving and
restoring the CPU registers & accumulators
– Minimum overhead is 17 to 20 E-clock cycles. With an 8 MHz

E-clock, this is a little over 2 µs. 26

IRQ Interrupt

• 𝑰𝑰𝑹𝑹𝑰𝑰 is an external maskable interrupt on HCS12
• Maskable interrupts (i.e. 𝐼𝐼𝐼𝐼𝐼𝐼 and all peripheral function

interrupts) are globally enabled by clearing the I-bit in the CCR

• The I-bit is set (i.e. interrupts are disabled) at system reset
• The I-bit can be cleared (i.e. interrupts enabled) or set

(interrupts disabled) at any time by user software
• When an interrupt occurs, the I-bit is automatically set by the

processor to prevent further interrupts
– The I-bit is then normally cleared when the rti instruction restores

the CCR

27

S X H I N Z V C
7 6 5 4 3 2 1 0

Interrupt Control Register

• The operation of the 𝑰𝑰𝑹𝑹𝑰𝑰 interrupt is further controlled by the
Interrupt Control Register IRQCR. It has two active control bits:

IRQEN: IRQ enable bit
1 = IRQ pin interrupt enabled (reset condition)
0 = IRQ pin interrupt disabled
This is the local interrupt enable for IRQ. It does not affect
other maskable interrupts

IRQE: IRQ edge-sensitive bit
1 = IRQ responds only to falling edge
0 = IRQ responds to low (‘0’) level (reset condition)

 Level sensitive IRQ allows multiple sources to be connected to this
pin (IRQ pin in internally pulled high), but need to make sure that
signal is de-asserted before returning from interrupt

 Edge sensitive IRQ means we don’t have to worry about duration of
IRQ pulse but makes the pin more noise sensitive

28

IRQE IRQEN 0 0 0 0 0 0
7 6 5 4 3 2 1 0

Picturing an Interrupt

29

Interrupts have been enabled by
clearing I bit in CCR (global) and
setting IRQCR to $C0 (local)

$FFF3
$FFF2

$04
$28

Address of Interrupt Service
Routine in Vector TableIRQ

SP
•••

$CFF2

$D000 PC ($43C7) and all registers
will be pushed on the stack

??
•••
??

Main:
•••

$43C6

$4000

Main Programincx
•••
??

IRQ_ISR:
•••

$282A

$2804
Interrupt Service Routine

rti
•••
??

IRQCR $001E $C0 IRQ Control – Int. enabled

$43C7
••• •••

aba

HCS12

𝐼𝐼𝐼𝐼𝐼𝐼

2
3

4

6

1

rti instruction restores registers
by pulling their values off the
stack

5

rti instruction loads PC with
return address from stack

6

CPU transfers control to
address of interrupt service
routine stored in interrupt table

4

when
executing
instruction at
$43C6

interrupted here

Example: Interrupt Driven Bouncing LEDs

• Suppose we have a 2 Hz digital square wave connected to pin
𝐼𝐼𝐼𝐼𝐼𝐼 of an HCS12 microcontroller. Rewrite the “Bouncing LEDs”
code to use this waveform to time the updating of the LED
pattern, rather than using a software time delay.

30

include hcs12.inc
ORG $800

pindex: DS.B 1 ;pattern index
led_tab: DC.B $80,$40,$20,$10,$08,$04,$02

DC.B $01,$02,$04,$08,$10,$20,$40

ORG $4000
movw #IRQIS, UserIRQ ; set up interrupt vector
movb #$FF, DDRB ; configure port B for output
movb #0, pindex ; initialize pattern index
movb led_tab, PTB ; output initial pattern
movb #$C0, IRQCR ; enable IRQ and edge triggering
cli ; enable maskable interrupts

forever: bra forever ; wait for interrupt

Example: Interrupt Service Routine

31

;Interrupt Service Routine

IRQIS: ldab pindex ; get current index
incb ; increment index
cmpb #14 ; are we past end of table?
bne pdxok
clrb ; if so, reset index

pdxok: stab pindex ; save updated index
ldx #led_tab ; X is table address
movb b, x, PTB ; send indexed pattern to LEDs
rti ; return to main program

XIRQ Interrupt

• 𝑿𝑿𝑰𝑰𝑹𝑹𝑰𝑰 is an external level sensitive non-maskable interrupt
• The 𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼 is enabled by clearing the X-bit in the CCR

• The X-bit is set (i.e. interrupt is disabled) at system reset
• The X-bit can be cleared (i.e. interrupt enabled) at any time by

user software
• Once cleared, the X-bit cannot be set by user software

– in other words, once enabled, this interrupt cannot be disabled

• When an 𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼 interrupt occurs, both the X-bit and I-bit are
automatically set by the processor to prevent further interrupts
– They are normally restored to their previous values when the rti

instruction restores the CCR
– Note that the X-bit is not set when a maskable interrupt occurs
– The 𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼 pin can interrupt a maskable interrupt service routine32

S X H I N Z V C
7 6 5 4 3 2 1 0

Other Non-maskable Interrupts

• Unimplemented Opcode Trap
– An opcode uses 1 or 2 bytes of memory – 511 possible opcodes
– Of these, only 309 of these are used
– If PC encounters an unused code, interrupt occurs through vector

address $FFF8:$FFF9
– Usually does not make sense to return from such an interrupt

• Software Interrupt Instruction
– This are commonly used by operating system to implement a

system call or debug monitor to insert a breakpoint into user code
– In case of breakpoint, software interrupt causes transfer of control

to monitor program which allows a user to examine memory and
registers

– Can continue interrupted program by executing an rti instruction

33

Computer Operating Properly (COP)

• COP is a free-running watch-dog timer
– checks that user programming is still running correctly
– will time-out and generate interrupt if not regularly re-armed
– used to automatically re-start code following software crash

• When COP is enabled, user program must write the sequence
{$55, $AA} into the ARMCOP register on a regular basis
– Failure to write the sequence within the specified time or writing

any other code to ARMCOP will generate COP interrupt which
resets CPU

• Time-out period can be set using register COPCTL
– anywhere from 214 to 224 crystal oscillator clock cycles
– 4 msec to 4 sec with a 4MHz crystal
– COPCTL register described in Fig. 6.17 of text

34

Real-Time Interrupt

• The Real-Time Interrupt (RTI) is an on-chip peripheral that can
be programmed to interrupt CPU at regular intervals.
– used to periodically update I/O, time multiplex displays, maintain

real-time clock, activate process scheduler etc.
– uses three registers to set up and control interrupt sequence

• CRG Interrupt Enable Register (CRGINT)

35

RTIE 0 0 LCKIE 0 0 SCMIE 0

7 6 5 4 3 2 1 0

RTIE: Real-time clock interrupt enable (‘0’: disabled, ‘1’: enabled)

Note: CRGINT and CRGFLG are registers belonging to Clock and
Reset Generation Unit (CRG). They control a number of clock and PLL
features – we are only concerned with RTI functionality

Real-Time Interrupt Registers

• CRG Flag Register (CRGFLG)

• RTI Control Register (RTICTL)

36

RTIF PORF 0 LOCKIF LOCK TRACK SCMIF SCM

7 6 5 4 3 2 1 0

RTIF: Indicates RTI time-out has occurred.
When RTIE =‘1’, an interrupt will occur when this flag is set.
RTIF must be reset in ISR by writing a ‘1’ to it.

0 RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0

7 6 5 4 3 2 1 0

RTR[6:0]: selects interrupt period anywhere from 210 to 220 crystal
oscillator clock periods

RTI Period (in units of OSC period)

37

Example: Real Time Clock

• Use the RTI facility to maintain a 24-hour real-time clock. Time
should be maintained in three locations hours, mins and secs at
locations $6000, $6001 and $6002 respectively. Assume crystal
oscillator is 4.096 MHz

38

include hcs12.inc

ORG $6000
hours: DS.B 1 ; global time variables
mins: DS.B 1
secs: DS.B 1
RTC_cnt: DS.B 1 ; count 10ms interrupts

ORG $4000
movw #rtisr, UserRTI ; set up interrupt vector
movb #$39, RTICTL ; set RTI timeout to 40,960 cycles
movb #$80, CRGINT ; enable rti (local) interrupt
cli ; enable maskable interrupts
bra stuff ; go do useful work

Example: Real Time Clock ISR

39

;Interrupt Service Routine

rtisr: movb #$80, CRGFLG ; clear RTI interrupt flag
inc RTC_cnt ; increment index
ldaa #100
cmpa RTC_cnt ; check for 100 x 10ms
beq up_secs
rti

up_secs: clr RTC_cnt
inc secs ; increments secs
ldaa #60
cmpa secs ; check for 60 secs
beq up_mins
rti

Example: Real Time Clock ISR (cont.)

40

up_mins: clr secs
inc mins
cmpa mins ; check for 60 mins
beq up_hrs
rti

up_hrs: clr mins
inc hours
ldaa #24
cmpa hours ; check for 24 hours
bne done
clr hours

done: rti

	CPE 390: Microprocessor Systems�Spring 2018
	Input/Output
	Two Common I/O Schemes
	Memory Mapped I/O
	I/O Interface
	HCS12 I/O Interface
	HCS12 Pinout Example
	HCS12 I/O Ports
	I/O Port Addresses
	First Few Lines of “hcs12.inc”
	Simple I/O: Ports A and B
	Simple I/O: Interfacing with LEDs
	Example: Bouncing LED Display
	Example: Bouncing LED Display - Code
	Interfacing with DIP Switches
	Interfacing with DIP Switches
	Interrupts
	Interrupt Sequence
	Stack Order on Interrupt
	Maskable Interrupts
	Non-Maskable Interrupts
	HCS12 Exception Processing System
	Interrupt Vector Table
	Sample of Interrupt Vector Table
	Interrupt Priority
	Interrupt Programming
	IRQ Interrupt
	Interrupt Control Register
	Picturing an Interrupt
	Example: Interrupt Driven Bouncing LEDs
	Example: Interrupt Service Routine
	XIRQ Interrupt
	Other Non-maskable Interrupts
	Computer Operating Properly (COP)
	Real-Time Interrupt
	Real-Time Interrupt Registers
	RTI Period (in units of OSC period)
	Example: Real Time Clock
	Example: Real Time Clock ISR
	Example: Real Time Clock ISR (cont.)

