
CPE 390: Microprocessor Systems
Spring 2018

Lecture 11
Parallel Ports

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

HCS12 Parallel Ports

• HCS12 is a microcontroller
– CPU + on-chip memory + on-chip I/O devices and interfaces
– On HCS12, I/O interfaces are called I/O Ports
– I/O Ports appear as registers mapped into memory address space

of microprocessor

– I/O Device may be on-chip (part of the microcontroller) or off-chip –
accessed though microcontroller’s I/O pins

– Unlike memory, I/O devices are not always ready to send to
receive data

– Need for some synchronization protocol 2

Micro-
processor

I/O
Port

I/O
(Peripheral)

Device
Data Bus

Addr. Bus

⁄𝑹𝑹 𝑾𝑾
𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

I/O Data

𝒔𝒔𝒊𝒊𝒔𝒔𝒊𝒊𝒊𝒊𝒔𝒔 &
𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒄𝒄𝒄𝒄

Synchronizing Microprocessor and I/O Port

• Brute Force method
– No checking of whether I/O device is ready
– For input – the CPU simply reads Port Data Register, assuming

that there is a valid piece of data in the register waiting to be read
– For output – the CPU simply writes the Port Data Register,

assuming that the I/O device is ready to respond to this new value
– Useful when timing is not important (e.g. LEDs, switches)

• Polling Method
– The I/O Port maintains status bits (flags) to indicate the readiness

of the I/O device to send or receive new data
– For input, the CPU checks a “data ready” flag. When set this

indicates that there is a new piece of input data available
– For output, the CPU checks a “busy” flag. When set this indicates

that the I/O device is still busy dealing with the previous value sent
by the CPU. The CPU waits for the “busy” flag to clear

– Simple to program, but the CPU spends most of its time checking
these flags (polling) – not available to do other useful work

3

Synchronizing Microprocessor and I/O Port (2)

• Interrupt method
– For input - the I/O Port interrupts the microprocessor whenever it

has received new data from the input device
– For output - the I/O Port interrupts the microprocessor whenever it

is ready to receive new data from the microprocessor
– More complex to code and debug – deadlocks, untested

sequences, stack underflow/overflow etc.
– Interrupt overhead with high speed I/O devices
– No wasted polling cycles – more efficient use of CPU resources –

CPU can do non-I/O related work while waiting for peripheral

4

Overview of HCS12 Ports

• HCS12 members have 48-144 I/O pins (depending on
package) arranged to serve 3-12 Parallel Ports (A thru T)

• Limited pin-out means that pins have multiple functions

• Associated with each Port is an on-chip peripheral function

– When peripheral function is not enabled, pins associated with that
port are available for general purpose I/O

– When peripheral function is enabled, pins are not available for
general purpose I/O but reassigned to support that peripheral
function

5

HCS12 I/O Ports

6

Port
Name #pins Pin Names

Data
Register
Name

Alternate
(Peripheral Function)

Use of I/O Pins
A 8 PA7~PA0 PTA Upper address & data bits
B 8 PB7~PB0 PTB Lower address & data bits
E 8 PE7~PE0 PTE Bus control and Ext. interrupt
H 8 PH7~PH0 PTH Serial Peripheral Interface (SPI)
J 4 PJ7,6,1,0 PTJ I2C and CAN (auto) Network
K 6 PK5~PK0 PTK Expanded address bits
M 8 PM7~PM0 PTM CAN, SPIO and I2C
P 8 PP7~PP0 PTP Pulse Width Modulation
S 8 PS7~PS0 PTS Serial Communications Interface
T 8 PT7~PT0 PTT Timer IOC functions

AD0,1 16 PAD15~PAD0 PTAD0,1 A/D Converter(s)

Parallel Ports - General Purpose I/O

• When the peripheral function is not being used, every port
has at least two registers associated with its operation as
a parallel port:
– a data register PTX (where X is the name of the port)
– a data direction register DDRX

• To configure a specific pin for output (input), write a ‘1’ (‘0’)
to associated bit in DDR register

– e.g. movb #$81, DDRP ; configure bits 0 & 7 of port P as output
; all other bits will be inputs

• Many ports have (up to 6) additional registers that further
define their operation

7

Operation Modes

• HCS12 can be operated in either:
• Single Chip Computer Mode

– all memory is on-chip and all I/O is via supplied on-chip ports
– address and data bus are not brought out to data pins
– all pins available for standard (incl. general purpose) I/O

• Expanded Mode
– address and data bus brought out to I/O pins
– can add external RAM, ROM and custom memory mapped I/O
– fewer pins available for standard I/O

8

Address Bus

Data Bus

RAM ROM I/OHCS12

power
clock
reset

Standard I/O
(parallel ports &

on-chip peripherals)

Ports A, B and K

• In single chip mode, ports A, B and K are available for
general purpose I/O
– Each port has a data register
– PTA and PTB are 8 bits, PTK is 6-bit (PK5 ~ PK0)
– each pin can be individually set for input or output
– Each port has a data direction register (DDRA, DDRB and DDRK)

• No interrupt capability or status flags
– Ideally suited for brute-force I/O
– More sophisticated synchronization requires use of extra I/O pins

(other ports, IRQ, etc.)
• In expanded mode, ports A, B and K are not available

– port A pins carry time multiplexed upper address and data bus
– port B pins carry time-multiplexed lower address and data bus
– port K pins carry extended address bits
– EVB (lab session) boards operate in expanded mode

9

Port T

• In addition to PTT and DDRT, port T has 4 extra registers:

• Port T Input Register (PTIT) allows the program to read
back the actual values on Port T pins when those pins are
configured as output
– can be used to check for overload, short etc. on output pins

• Port T Reduced Drive Register (RDRT) can be used to
configure each output as full or reduced drive strength
– ‘0’ = full drive strength, ‘1’ = approx. 1/3 drive strength (current)
– can be used to slow I/O edges - leads to reduced EMI emissions

10

1
PTT3

write from CPU PT3

off-chip

short
to

GND
(for example)

0
PTIT3

read to CPU

//

on-chip

• Port T Pull Device Enable Register (PERT) configures
each input pin to include a pull-up or pull-down device
– ‘0’ = pull-up /pull-down disabled, ‘1’ = pull-up/pull-down enabled

• Port T Polarity Select Register (PPST) selects for each
input pin whether a pull-down or pull-up is connected
– only affects those inputs for which PERT bit is set to ‘1’
– ‘0’ = pull-up device, ‘1’ = pull-down device

• Port T pins are also used as timer input capture/output compare pins

Port T (cont.)

11

PT2

pull-up

VCC

‘wired – OR’

pull-
down

PT5

VCC

Port S

• Port S has the same 6 registers as Port T (PTS, DDRS,
PTIS, RDRS, PERS and PPSS) plus:

• the Port S Wired-OR Mode Register (WOMS) configures
each output pin as a pull-down driver suitable for wired-OR
connection
– ‘0’ = regular push-pull output, ‘1’ = open drain pull-down output

• Ports S and T are available on lab. EVB board
• But, Port S pins are used to support serial interface

12

PS1
pull-up

VCC

‘wired – OR’PTS1

open-drain
driver

• A common cathode 7-segment display can be driven from a
parallel port using 74HC244 octal buffer and 300Ω current
limiting resistors

Example: Driving a 7-Segment Display

13

BCD
Digit

Segments Hex
Codea b c d e f g

0 1 1 1 1 1 1 0 $7E
1 0 1 1 0 0 0 0 $30
2 1 1 0 1 1 0 1 $6D
3 1 1 1 1 0 0 1 $79
4 0 1 1 0 0 1 1 $33
5 1 0 1 1 0 1 1 $5B
6 1 0 1 1 1 1 1 $5F
7 1 1 1 0 0 0 0 $70
8 1 1 1 1 1 1 1 $7F
9 1 1 1 1 0 1 1 $7B

PT6
PT5
PT4
PT3
PT2
PT1
PT0

a
b
c
d
e
f
g

a

b

c

d

e

f
g

common cathode

HCS12
74

1H
C

24
4

𝟑𝟑𝟑𝟑𝟑𝟑𝜴𝜴

four: EQU $33 ;seven-segment pattern for 4
…
movb #$FF, DDRT ;configure port T for output
movb #four, PTT ;output 7-segment pattern

• Connecting multiple 7-segments displays to separate output
ports would require excessive number of I/O pins

• Solution is to share segment pattern
– Turn on one display at a time - cycle quickly through different displays
– Persistence of vision makes it appear they are all on simultaneously

Driving Multiple 7-Segment Displays

14

a
b

g

a
b

g

a
b

g

74HC244

HCS12

PT6 PT5 PT0. . .

. . . .

74
1H

C
36

7

PS0

PS3

PS4

#4 #3 #0

• Write a program to display “14725” on the five seven-segment
displays:

Code Example: Driving 5 displays

15

include hcs12.inc
ORG $800

data: DC.B 1,4,7,2,5 ;digits to be displayed
patterns: DC.B $7E,$30,$6D,$79,$33,$5B,$5F,$70,$7F,$7B ;7-seg. patterns
dispen: DC.B $EF, $F7,$FB,$FD,$FE ;display enable codes
disptr: DS.W 1 ;pointer to display codes

Driving 5 displays (2)

16

ORG $4000
movb #$FF, DDRT ;set up Port T for output
movb #$1F, DDRS ;set up lower 5 bits of Port S for output

forever: ldy #data ;pointer to digits
ldx #dispen ;set up display code pointer
stx disptr

next: ldaa 1,y+ ;get digit & increment pointer
ldx #patterns ;pointer to patterns
ldab a,x ;get 7-segment code
stab PTT ;output the pattern to displays
ldx disptr
ldaa 1,x+ ;get display code
stx disptr ;increment display pointer
staa PTS ;output display code to Port S
jsr delayby1ms ;hold pattern for 1ms
cpy #data+5 ;are we done yet?
lbeq forever ;yes -start again on first digit
bra next ;no – go to next digit

Ports H, J and P

• Ports H, J and P have the same 6 registers as Port T (e.g.
PTP*, DDRP, PTIP, RDRP, PERP and PPSP) plus 2 extra
registers:

• the Port P Interrupt Flag Register (PIFP) indicates, on a
per-pin basis when a rising (falling) edge has occurred on
corresponding input pin in data register (PTP)
– ‘0’ = edge has not occurred, ‘1’ = edge has occurred
– indicates rising edge if corresponding bit in Polarity Select Register

(PPSP) is ‘1’, otherwise indicates falling edge
– can be used as a “new data ready” flag when polling
– CPU must write a ‘1’ to clear the flag
– causes an interrupt if corresponding bit is set in Interrupt Enable

register (PIEP)
* Only Port P register names are given. For Ports H and J, just replace P in
register names with H or J.

17

• the Port P Interrupt Enable Register (PIEP) enables
interrupt to occur when corresponding bit in Interrupt Flag
Register (PIFP) is set
– ‘0’ = interrupt is disabled, ‘1’ = interrupt is enabled
– each Port P pin can be used as an independent edge-sensitive

interrupt source
– all eight pins of the port share the same interrupt vector
– when interrupt occurs, interrupt service routine checks PIFP

register to see which bit(s) is set
– Can be used to add interrupt to existing data port, e.g:

Ports H, J and P (cont.)

18

PT[0-7]

PTT[0-7]

PP0PIFP0

Peripheral
Device

data

new data readypoll flag or
interrupt

to CPU

• HCS12 can have up to two on-chip, 8 channel, 10 bit A/D
converters
– 16 analog input pins AN7~AN0 (associated with AD0) and

AN15~AN8 (associated with AD1)
• When A/D’s are not being used, these input pins can be

redefined as digital inputs PAD15~PAD0 associated with
parallel ports PTAD1 and PTAD0.

• ATD Input Enable Register (ATD0DIEN and ATD1DIEN)
determines on a per-pin basis, whether a bit should be
used as an analog or digital input
– ‘0’ disables digital input on PTAD pin, ‘1’ enables digital input
– AD0 and AD1 ports can only be used as input (no digital output)

Ports AD0 and AD1

19

• A Digital to Analog Converter (DAC or D/A) converts binary
fixed-point numbers to an analog voltage or current
– Analog output is a linear function of digital input
– Input is often sampled digital values resulting from digital signal

processing

• Specifications of a D/A converter include:
– resolution (how many input bits)
– number of channels (of output)
– type of output (voltage, current, etc.)
– speed (in response to changing digital input)
– linearity (how much error in conversion process)
– monotonicity (can an increase in input generate decrease in output?)
– noise (superimposed on analog output)

Interfacing to D/A Converter

20

DAC𝐷𝐷𝑖𝑖𝑖𝑖n-bit binary
digital input

analog output
𝑉𝑉 = 𝑘𝑘.𝐷𝐷𝑖𝑖𝑖𝑖

Example: 4-bit D/A Converter

• 16 possible 4-bit
input codes

• translate into 16
different output
voltages in the range
of 0-4V.

21

0.00

3.75

0.25
0.50

3.50

2.00

D/A
Output
(volts)

0
0
0
0

0
0
0
1

1
0
0
0

1
1
1
1

D/A Input
(4-bit code)

• Dual Channel 8-bit D/A converter made by Analog Devices
• Designed to be a memory mapped device:

• Data is latched into input register on rising edge of 𝑊𝑊𝑊𝑊
• Each conversion takes about 2𝜇𝜇𝜇𝜇 to complete

*Note: If REFin ≈ VDD, otherwise see text book

AD7302 D/A Converter

22

Input
Register

Input
Register

Control
Logic

DAC
Latch I DAC A

I DAC B

÷ 2

DAC
Latch

I/V

I/V

MUX

𝐷𝐷𝐷
𝐷𝐷𝐷

�̅�𝐴/𝐵𝐵
𝑊𝑊𝑊𝑊
𝐶𝐶𝐶𝐶

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵

𝐿𝐿𝐷𝐷𝐴𝐴𝐶𝐶 𝑊𝑊𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 𝑉𝑉𝐷𝐷𝐷𝐷

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴/𝐵𝐵 = 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 × ⁄𝐷𝐷 256 *

• Configure Port P for digital output
• Use rising edge on PJ0 to latch data into D/A
• Select output A for triangular output

Generate Triangular Waveform using D/A

23

AD7302

𝐷𝐷𝐷~𝐷𝐷𝐷

𝑊𝑊𝑊𝑊

𝑃𝑃𝐷𝐷
𝐶𝐶𝐿𝐿𝑊𝑊

𝐶𝐶𝐶𝐶
𝐿𝐿𝐷𝐷𝐴𝐴𝐶𝐶

𝑉𝑉𝐷𝐷𝐷𝐷
𝑊𝑊𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷
𝐷𝐷𝐴𝐴𝐴𝐴𝐷𝐷

5V

𝑉𝑉𝐶𝐶𝐶𝐶

HCS12

�̅�𝐴/𝐵𝐵

𝑃𝑃𝑃𝑃𝐷~𝑃𝑃𝑃𝑃𝐷

𝑃𝑃𝑃𝑃𝐷

𝑃𝑃𝑃𝑃𝐷

Code for Triangular Waveform

24

ORG $4000
movb #$FF, DDRP ;configure Port P for output
movb #$81, DDRJ ;configure PJ0 and PJ7 for output
bclr PTJ, $80 ;select VOUTA output
clra ;initialize count

cntup: staa PTP ;send count to output
bclr PTJ, $01 ;generate rising edge on PTJ0
bset PTJ, $01 ;to load value into DAC
jsr waitfor1ms ;hold value for 1ms
inca ;increment count
cmpa #$FF ;test for maximum
bne cntup

cntdn: staa PTP ;send count to output
bclr PTJ, $01 ;generate rising edge on PTJ0
bset PTJ, $01 ;to load value into DAC
jsr waitfor1ms ;hold value for 1ms
deca ;decrement count
bne cntdn ;test for minimum
bra cntup

• Write a program to display “14725” on the five seven-segment displays
• Only turn on displays when “enable” button is pushed

Driving 5 displays with “display enable” button

25

a
b

g

a
b

g

a
b

g

74HC244

HCS12

PT6 PT5 PT0. . .

. . . .

74
1H

C
36

7

PS0

PS3

PS4

#4 #3 #0

PT7

enable

Driving 5 displays with “display enable” button

26

include hcs12.inc
ORG $800

data: DC.B 1,4,7,2,5 ;digits to be displayed
patterns: DC.B $7E,$30,$6D,$79,$33,$5B,$5F,$70,$7F,$7B ;7-seg. patterns
dispen: DC.B $EF, $F7,$FB,$FD,$FE ;display enable codes
disptr: DS.W 1 ;pointer to display codes

Driving 5 displays (2)

27

ORG $4000
movb #$7F, DDRT ;set PortT(0-6) for output, PorT(7) for input
movb #$80, PERT ;set PT7 to have pull up/down device
movb #$00, PPST ;set PT7 pull direction as pull-up
movb #$1F, DDRS ;set up lower 5 bits of Port S for output

forever: ldy #data ;pointer to digits
ldx #dispen ;set up display code pointer
stx disptr

next: ldaa 1,y+ ;get digit & increment pointer
ldx #patterns ;pointer to patterns
ldab a,x ;get 7-segment code
stab PTT ;output the pattern to displays
ldx disptr
ldaa 1,x+ ;get display code
stx disptr ;increment display pointer
brclr PTT, $80, skip ;branch if button pushed
ldaa #$1F ;set display code to “all-off”

skip: staa PTS ;output display code to Port S

Driving 5 displays (2)

28

jsr delayby1ms ;hold pattern for 1ms
cpy #data+5 ;are we done yet?
lbeq forever ;yes -start again on first digit
bra next ;no – go to next digit

	CPE 390: Microprocessor Systems�Spring 2018
	HCS12 Parallel Ports
	Synchronizing Microprocessor and I/O Port
	Synchronizing Microprocessor and I/O Port (2)
	Overview of HCS12 Ports
	HCS12 I/O Ports
	Parallel Ports - General Purpose I/O
	Operation Modes
	Ports A, B and K
	Port T
	Port T (cont.)
	Port 	S
	Example: Driving a 7-Segment Display
	Driving Multiple 7-Segment Displays
	Code Example: Driving 5 displays
	Driving 5 displays (2)
	Ports H, J and P
	Ports H, J and P (cont.)
	Ports AD0 and AD1
	Interfacing to D/A Converter
	Example: 4-bit D/A Converter
	AD7302 D/A Converter
	Generate Triangular Waveform using D/A
	Code for Triangular Waveform
	Driving 5 displays with “display enable” button
	Driving 5 displays with “display enable” button
	Driving 5 displays (2)
	Driving 5 displays (2)

