
CPE 390: Microprocessor Systems
Spring 2018

Lecture 12
Timer Functions

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

What are Timer Functions?

• A microprocessor operating in a real-time embedded
application has to be able to:
– generate (output) signals/waveforms with precise timing characteristics

so as to accurately initiate and control events in external system
– analyze temporal properties of (input) signals/events detected in

external system so as to accurately determine state of external system
and react accordingly

• Microprocessor may need to perform
– time delay creation and measurement
– period and pulse-width measurement
– frequency measurement
– event counting
– arrival time comparison
– time-of-day tracking
– periodic interrupt generation
– waveform generation 2

How Should Timer Functions be Implemented?

• Possible to implement most timer functions in software
using interrupt driven real-time clock to measure and
schedule events
– very expensive in terms of available processing power
– difficult to respond accurately to fast (short time period) events
– difficult and tedious to program

• These operations can be handled more efficiently in
hardware
– most microcontrollers include some type of timer peripheral

• The HCS12 includes powerful timer module to support
these time-based functions
– we will study the detailed operation of HCS12 timer
– general principals and functions applicable to broad array of

microcontrollers
3

HCS12 Timer System

• The HCS12 has a standard timer module that is built
around a 16-bit timer counter
– counter is clocked by sub-multiple of bus clock (E-clock) and can

be started and stopped at any time
• Provides 8 channels of input capture or output compare
• Input capture copies value of timer into a register when a

specified input event (signal edge) occurs
– can be used to measure pulse-width, period, duty cycle etc.
– optionally generates an interrupt

• Output compare waits for the timer to be equal to a value
in a register and optionally generates an output signal
– can be used to generate time delay, trigger action at some future

time, create a complex digital waveform etc.
– optionally generates an interrupt

4

HCS12 Timer System (2)

• The HCS12 also provides:
• Pulse Accumulator – includes a second 16-bit counter to

count input events arriving in a certain interval
– can be used to simply count occurrences of some external

event or measure frequency

• Pulse Width Modulation – can be used to generate
simple waveforms without intervention of CPU
– user sets up period and duty cycle

• Timer module shares I/O pins (IOC0~IOC7) with Port T
(PT0~PT7)
– Port T pins are not available as general purpose parallel port

pins when they are being used by Timer module.

5

Timer Block Diagram

Input-capture
Output-compareCh 0

Input-capture
Output-compareCh 1

Input-capture
Output-compareCh 2

Input-capture
Output-compareCh 3

Input-capture
Output-compareCh 4

Input-capture
Output-compareCh 5

Input-capture
Output-compareCh 6

Input-capture
Output-compareCh 7

IOC0 / PT0

IOC1 / PT1

IOC2 / PT2

IOC3 / PT3

IOC4 / PT4

IOC5 / PT5

IOC6 / PT6

IOC7 / PT7

Prescaler

Timer
Overflow
Interrupt

E-clock

16-bit counter

TC0 Interrupt
TC1 Interrupt
TC2 Interrupt
TC3 Interrupt
TC4 Interrupt
TC5 Interrupt
TC6 Interrupt
TC7 Interrupt

PA Overflow
Interrupt
PA Input
Interrupt

Registers

16-bit Pulse
Accumulator

Timer Counter Register

• Timer Counter Register (TCNT) is the primary 16-bit
counter
– can be directly read/written by user
– always use 16-bit (word) access to guarantee correct read/write
– three other registers related to operation of TCNT:

7

• Timer Interrupt Flag Register 2 (TFLG2)

TOF 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0at reset:

TOF: timer overflow flag
– this flag is set whenever TCNT rolls over from $FFFF to $0000
– flag can be cleared by writing a ‘1’ to it

Timer Counter Registers

• Timer System Control Register 1 (TSCR1)

8

TEN TSWAI TSFRZ TFFCA 0 0 0 0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0at reset:

TEN: timer enable bit
‘0’ disables timer
‘1’ allows timer to count

TSWAI: timer stop in wait mode bit (used in power-down situations)*

TSFRZ: timer stop in freeze mode bit (used in debugging)*

TFFCA: timer fast flag clear all bits
‘0’ allows timer flag clearing to function normally
‘1’ causes flag to be cleared when corresponding data register is read

* we will not be using these bits

Timer Counter Registers

• Timer System Control Register 2 (TSCR2)

9

TOI 0 0 0 TCRE PR2 PR1 PR0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0at reset:

TOI: timer overflow interrupt enable bit
‘0’ interrupt disabled
‘1’ interrupt when TOF flag is set

(i.e. when TCNT overflows)

TCRE: timer counter reset enable bit*
‘0’ counter free runs
‘1’ counter reset by successful
output-compare 7

PR2~0: sets counter clock pre-scale
(E-clock is divided by this factor)

* we will not be using this bit

PR2 PR1 PR0 Prescale
Factor

0 0 0 1
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

Input Capture Function

• Input capture records the physical time of an external event
• Physical time is represented by contents of timer (TCNT)
• An event is represented by (rising or falling) edge on input pin

• When an event occurs:
– value of timer is latched into a 16-bit register
– flag is set (which may optionally generate an interrupt)

• HCS12 can employ up to eight input capture channels
– each including a input pin, capture register and interrupt logic

• Input capture channels share circuitry with output compare
function, so each channel can only be one or the other
– TIOS register selects between these two functions 10

time

rising edge

time

falling edge

or

TIOS Register

• Port T has eights I/O (signal) pins that can be used:
– to implement input-capture, OR
– to implement output-compare OR
– as a general purpose Port T parallel I/O pin*

• Timer Input-Capture/Output-Compare Select (TIOS)

11

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0at reset:

IOS[7:0]: input-capture/output-compare configuration bits
‘0’: the corresponding channel acts as an input-capture
‘1’: the corresponding channel acts as an output-compare

* To use a pin as a general purpose Port T pin, set the IOS bit to ‘0’ and see TCTL3 & 4

Registers Associated with Input Capture

• Timer Control Registers 3 and 4 (TCTL3 and TCTL4)

– When an input capture channel is selected, but capture is disabled,
the associated pin can be used as general purpose I/O (Port T)12

EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0at reset:

EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0at reset:

TCTL3:

TCTL4:

EDGnB EDGnA Edge Configuration
0 0 capture disabled
0 1 capture on rising edge only
1 0 capture on falling edge only
1 1 capture on both edges

Registers Associated with Input Capture (2)

• Timer Interrupt Flag Register 1 (TFLG1)

• Timer Interrupt Enable Register (TIE)

13

C7I C6I C5I C4I C3I C2I C1I C0I

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0at reset:
C7I:C0I: input-capture-output-compare interrupt enable bits

‘0’ interrupt disabled
‘1’ interrupt enabled
generates interrupt when corresponding bit of TFLG1 register is set

C7F C6F C5F C4F C3F C2F C1F C0F

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0at reset:
C7F:C0F: input-capture-output-compare interrupt flag bits

‘0’ interrupt (selected edge) condition has not occurred
‘1’ interrupt (selected edge) condition has occurred

Registers Associated with Input Capture (3)

• Timer Counter Data Registers (TC7~TC0)
– Each input-capture channel has a 16-bit register TCn which holds

count value captured when the selected signal edge arrives at the pin
• this register is also used by the output-compare function when this

function has been selected

• How to clear an input-capture interrupt flag:
– When selected edge event has been detected, interrupt flag in TFLG1

corresponding to that input channel is set
• If corresponding interrupt enable bit in TIE register is set, this will generate

an interrupt
– When processing an event it is important to clear this interrupt flag to

(a) get ready for the next event and (b) prevent further interrupts
• Interrupt flag can be manually cleared by writing a ‘1’ to the interrupt flag

bit in the TFLG1 register
• Alternatively, if we set bit 4 (TFFCA) of the TSCR1 register, the interrupt

flag will be automatically cleared whenever we read the value in the
corresponding Timer Counter Data Register (TCn)

• Note that flag cannot be manually cleared if TFFCA is set
14

Summary of Input Capture (Channel 4)

15

pre-scaleE-clock

T
C
N
T

16
T
C
4

16to CPU

edge
detect

pin
IOC4 external

signal

T
F
L
G
1

TFLG1[4]

T
I
E

TIE[4]

Timer-
Counter 4
Interrupt

Applications of Input Capture

• Event arrival-time recording
– e.g. logging personnel entry and exit in electronic key-card system, or

recording arrival times of different swimmers in swimming competition
• Period Measurement

– capture times of two successive rising or falling edges

• Pulse-width Measurement
– capture time of rising edge and next falling edge

16

one period

one period

pulse width

Applications of Input Capture (2)

• Duty Cycle Measurement
– percentage of time that a periodic signal is high within single period

• Phase Difference Measurement
– difference in arrival times (as percentage of period) of two signals of

the same frequency

17

T

∆T

duty cycle =
∆𝑇𝑇
𝑇𝑇

× 100%

T

∆T

signal S1:

signal S2:

phase difference =
∆𝑇𝑇
𝑇𝑇

× 360°

Applications of Input Capture (3)

• Interrupt Generation
– Each input-capture function can be used as a distinct edge-sensitive

interrupt source
• Event Counting

– can be used in conjunction with output-compare function to count
number of occurrences of certain event during specified time interval

– counter incremented each time we get an input-capture interrupt

• Time Reference
– activate an output specified period after detecting input event

18

start
interval

end
interval

(output-capture)

e0 e1 e2 e3 ek-2 ek-1 ek. . .

(input-capture) (output-compare)

time t0 time (t0+ delay)

Example: Period Measurement
• Use input-capture channel 0 to measure period of an unknown

repetitive signal. Period is known to be shorter than 128ms.
Assume the E-clock frequency is 24 MHz

Since input capture register is 16-bit, longest period we can measure with
pre-scaler set to 1 is ⁄216 24 𝑀𝑀𝑀𝑀𝑀𝑀 = 2.73 𝑚𝑚𝑚𝑚
To measure a period up to 128 ms, we have two options:

(a) set pre-scale = 1 and count no. of times timer counter overflows
(b) set pre-scale = 64 and know that timer counter will not overflow

Option (a) gives greater accuracy, but is more difficult to program
We will use option (b)

19

PT0

HCS12 1 period

Steps in Period Measurement

1. Enable timer-counter
Set timer-counter pre-scale to 64
Enable rising edge events on channel 0
Clear C0F flag

2. Wait for C0F = 1

3. Save time of captured first edge
Clear C0F flag

4. Wait for C0F = 1

5. Read time of captured second edge
Take difference between second and first captured edges

Result will be number of clock cycles × clock period (= 2.67𝜇𝜇𝜇𝜇)
20

Code for Period Measurement

21

include hcs12.inc
ORG $800

edge1: DS.W 1 ;location to save first edge
period: DS.W 1 ;location to save period (in pre-scaled cycles)

ORG $4000
movb #$90, TSCR1 ;enable timer counter and fast flag clear option
bclr TIOS, $01 ;enable input-capture 0
movb #$06, TSCR2 ;disable TCNT overflow and set pre-scale=64
movb #$01, TCTL4 ;set to capture rising edge of PT0 signal
ldd TC0 ;clear the C0F flag
brclr TFLG1, $01, * ;wait for arrival of first edge
ldd TC0 ;save first edge and clear C0F flag
std edge1
brclr TFLG1, $01, * ;wait for second edge
ldd TC0
subd edge1 ;compute the period (in pre-scaled cycles)
std period ;save result
swi

Example: Pulse-Width Measurement
• Use input-capture channel 0 to measure (with ±1µs resolution)

pulse-width of a signal. Assume the E-clock frequency is 24 MHz

For 1µs resolution, set pre-scaler = 16 (resolution = ⁄16 24 𝑀𝑀𝑀𝑀𝑀𝑀 = 670 𝑛𝑛𝑠𝑠)
For long pulses (> 43 ms), the timer-counter may overflow many times
Record # times timer-counter overflows using interrupts and store overflow
count in 16-bit memory location
Maximum pulse width will now be ⁄(232× 16) 24 𝑀𝑀𝑀𝑀𝑀𝑀 = 2,863 𝑠𝑠 (~ 48 mins)
To calculate pulse width (PW) given capture counts of first and second
edges (edge1, edge2) and counter overflow count (ovcnt):

22

PT0

HCS12 pulse-width

𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≥ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 216 + (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃 = (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 1) × 216 + (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

(up to 1 sec.)

Steps in Pulse-Width Measurement

1. Set up timer-counter overflow interrupt vector
Clear overflow count
Enable timer-counter
Set timer-counter pre-scale to 16
Enable rising edge events on channel 0
Clear C0F flag

2. Wait for C0F = 1

3. Save time of captured first edge
Clear C0F flag
Enable counter-timer overflow interrupt
Enable falling edge events

4. Wait for C0F = 1

5. Disable interrupts
Read time of captured second edge
Take difference between second and first captured edges
If second edge count is smaller than first, decrement overflow count23

Clear TOF flag
increment overflow count
return from interrupt

TOF ISR

Code for Pulse-Width Measurement

24

include hcs12.inc
ORG $800

edge1: DS.W 1 ;location to save first edge
ovflow: DS.W 1 ;’ovflow’ with ‘PW’ gives a 4-byte pulse-width
PW: DS.W 1 ;measurement (in E-clock cycles)

ORG $4000
movw #tof_isr, $3E5E ;set up TCNT overflow interrupt vector
lds #$5000 ;set up stack pointer
movw #0, ovflow ;clear overflow count
movb #$90, TSCR1 ;enable timer counter and fast flag clear option
bclr TIOS, $01 ;enable input-capture 0
movb #4, TSCR2 ;disable TCNT interrupt and set pre-scale=16
movb #$01, TCTL4 ;capture rising edge of PT0 signal
ldd TC0 ;clear the C0F flag
brclr TFLG1, $01, * ;wait for arrival of first edge
movw TC0, edge1 ;save first edge and clear C0F flag
movb #$80, TFLG2 ;clear TOF flag
bset TSCR2, $80 ;enable TOF interrupt
cli ;enable (global) maskable interrupts

Code for Pulse-Width Measurement (2)

25

movb #$02, TCTL4 ;capture falling edge of PT0 signal
brclr TFLG1, $01, * ;wait for second edge
sei ;turn off interrupts
ldd TC0
subd edge1 ;compute the period (in pre-scaled cycles)
std PW ;save result
bcc done ;is second edge smaller? (could use bhs)
ldx ovflow ;yes – then decrement
dex
stx ovflow

done: swi

tov_isr: movb #$80, TFLG2 ;clear TOF flag
ldx ovflow
inx ;increment overflow count
stx ovflow
rti

Output-Compare Function

• Output-compare used to trigger some action at a specific
time in the future

• HCS12 supports up to eight output-compare channels, including:
– 16-bit compare register TCx (same register as used in input-capture)
– 16-bit comparator
– output action pin PTx (can be pulled high, low, or toggled)
– interrupt request option

• To set up an output-compare operation, the user:
– activates output-compare channel & selects output pin function
– makes a copy of current contents of TCNT register
– adds to this a value equal to desired delay
– stores the sum into output-compare register

• A successful compare will
– set corresponding flag in TFLG1 register
– optionally perform output pin operation
– optionally generate interrupt

26

Output-Compare Registers

• In addition to registers already described under input-capture:
– TCNT, TSCR1, TSCR2, TFLG1, TFLG2, TIOS and TIE
– these registers perform essentially same function for output-compare

• Timer Control Registers 1 and 2 (TCTL1 and TCTL2)

27

OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0at reset:

OM3 OL3 OM2 OL2 OM1 OL1A OM0 OL0

0 0 0 0 0 0 0 0at reset:

TCTL1:

TCTL2:

OMn OLn Output Level
0 0 no action
0 1 toggle OCn pin
1 0 clear OCn pin to 0
1 1 set OCn pin to 1

Summary of Output Capture (Channel 4)

28

pre-scaleE-clock

T
C
N
T

16
T
C
4

16
from
CPU

output
operation

pin
IOC4 output

signal

T
F
L
G
1

TFLG1[4]

T
I
E

TIE[4]

Timer-
Counter 4
Interrupt

=?16

Example: Waveform Generation
• Use output-compare channel 5 to generate an active-high 1.0 kHz

waveform with a 30% duty cycle. Assume frequency of E-clock is
24 MHz.

Set pre-scaler = 8. Then TCNT period will be 1/3 µs
Number of clock cycles for high and low output will be 900 and 2100

29

PT5

HCS12 300 µs

700 µs

Steps in Waveform Generation

1. Enable timer-counter
Set timer-counter pre-scale to 8
Set TIOS to enable OC5

2. Set OC5 pin action to “pull high”
Start OC5 with count=LoCnt

3. Wait for C5F = 1

4. Change pin action to “pull low”
Start OC5 with count=HiCnt

5. Wait for C5F=1

6. Go to step 2
30

Variables:
HiCnt is duration of high level (900 cycles)
LoCnt is duration of low level (2100 cycles)

Code for Waveform Generation

31

include hcs12.inc
HiCnt: EQU 900
LoCnt: EQU 2100

ORG $4000
movb #$90, TSCR1 ; enable TCNT with fast flag clear option
movb #$03, TSCR2 ; set prescaler to 8
bset TIOS, $20 ; enable OC5

low: movb #$0C, TCTL1 ; configure OC5 action to “pull high”
ldd TCNT ; start OC5 with delay =LoCnt
addd #LoCnt
std TC5 ; this also clears C5F
brclr TFLG1, $20, * ; wait until C5F=1 (which means PT5=1)
movb #$04, TCTL1 ; configure pin action to “pull low”
ldd TCNT ; start OC5 with delay=HiCnt
addd #HiCnt
std TC5
brclr TFLG1, $20, * ; wait for C5F=1 (which means PT5=0)
bra low ; repeat

Example: Waveform Generation with Interrupts

1. Set up OC5 interrupt vector
Enable timer-counter
Set timer-counter pre-scale to 8

2. Set OC5 pin action to “pull high”
Set HiLo to 0
Start OC5 with count=LoCnt
Enable OC5 interrupt

3. Go do “other stuff”

32

1. if HiLo=1 go to step 2
set pin action to “pull low”
restart OC5 with count=HiCnt
set HiLo=1
return from interrupt

2. set pin action to “pull high”
restart OC5 with count=LoCnt
set HiLo=0
return form interrupt

OC5 ISR

HiCnt is duration of high level (900 cycles)
LoCnt is duration of low level (2100 cycles)
HiLo indicates current output (0 or 1)

• Modify waveform generator to use interrupts, so that processor is
free to do other useful work

Code for Waveform Generation with Interrupts

33

include hcs12.inc
HiCnt: EQU 900
LoCnt: EQU 2100

ORG $800
HiLo: ds.b 1 ; flag to indicate current output level (0 or 1)

ORG $4000
movw #OC5isr, $3E64 ;set up OC5 interrupt vector
lds #$5000 ;set up stack pointer
movb #$90, TSCR1 ;enable TCNT with fast flag clear option
movb #$03, TSCR2 ;set prescaler to 8
bset TIOS, $20 ;enable OC5

movb #$0C, TCTL1 ;configure OC5 action to “pull high”
ldd TCNT
addd #Lo_Cnt ;clear C5F flag and start with delay=LoCnt
std TC5
clr HiLo ;set current output flag = 0

Code for Waveform Generation with interrupts (2)

34

movb #$20, TIE ;enable OC5 interrupt
cli ;enable (global) interrupts
bra other_stuff ;while OC5 generates output waveform

Code for Waveform Generation with interrupts (3)

35

OC5isr: tst HiLo ; what is current output level?
bne low_next ; if one, then low level next
movb #$08, TCTL1 ; set output to “pull low”
ldd TCNT
addd #HiCnt ;clear C5F flag and restart with delay=HiCnt
std TC5
movb #1, HiLo ;set current output level=1
rti

low_next: movb #$0C, TCTL1 ; set output to “pull high”
ldd TCNT
addd #LoCnt ;clear C5F flag and restart with delay=LoCnt
std TC5
clr HiLo ;set current output level=0
rti

Example: Measure Frequency
• Combine the use of input-capture and output-compare

functions to measure frequency.
• Set up OC1 to define a one second measuring period. Use IC0 to

count number of rising edges on TC0 during a one second interval.
Assume E-clock is 8 MHz

Note that PT1 signal is not needed externally. OC1 is simply used to
generate an “internal” time period for counting edges on PT0
Set pre-scaler = 8. Then TCNT period will be 1 µs
One second period can be measured as 100 times 10ms
Use interrupts to count PT0 edges 36

PT1

HCS12 1 second interval

PT0
unknown frequency

Code Frequency Measurement

37

include hcs12.inc
ORG $800

oc_cnt: ds.b 1 ;variable to count 10ms periods
freq: ds.w 1 ;variable to count edges on PT0

ORG $4000
movw #tc0isr, $3E6E ;set up IC0 interrupt vector
lds #$5000 ;set up stack pointer
movb #$90, TSCR1 ;enable TCNT with fast flag clear option
movb #$03, TSCR2 ;set pre-scaler to 8
movb #$02, TIOS ;enable OC1 and IC0
movb #100, oc_cnt ;initialize 10ms period counter to 100 periods
movw #0, freq ;initialize edge count to 0
movb #$01, TCTL4 ;configure IC0 to capture rising edges
ldd TC0 ;clear C0F flag
bset TIE, $01 ;enable interrupts on IC0
cli ;enable (global) interrupts

Code Frequency Measurement

38

continue: ldd TCNT
addd #10000 ;set OC delay to 10,000 cycles
std TC1
brclr TFLG1, $02, * ; wait for 10 ms
dec oc_cnt ;are we done yet?
bne continue;
bclr TIE, $01 ;disable IC0 interrupt to stop counting
swi

tc0isr: ldd TC0 ;clear C0F flag
ldx freq
inx ;increment edge-count
stx freq
rti

Example: Siren Oscillator
• A small speaker is attached to PT0. Write a program to generate a

siren that oscillates between 300 Hz and 1200 Hz at 0.5 second
intervals. Assume E-clock = 24 MHz

Set pre-scaler to 8. Each count is then 1/3 µs
Use OC0 in interrupt mode to generate continuous square wave at specified
frequency (300 or 1200 Hz)
Use OC4 in polling mode to switch frequencies every 500 ms

39

HCS12

PT0
3.3 µF

Code Siren Oscillator

40

include hcs12.inc
hi_freq: EQU 1250 ;1200 Hz half-period in units of 1/3 us
lo_freq: EQU 5000 ;300 Hz half-period in units of 1/3 us

ORG $800
delay: ds.w 1 ;delay variable to determine frequency

ORG $4000
movw #tc0isr, $3E6E ;set up OC0 interrupt vector
lds #$5000 ;set up stack pointer
movb #$90, TSCR1 ;enable TCNT with fast flag clear option
movb #$03, TSCR2 ;set pre-scaler to 8
bset TIOS, $03 ;enable OC1 and OC0
movb #$01, TCTL2 ;configure OC0 to toggle output
movw #hi_freq, delay ;start with high tone
ldd TCNT ;set up half-period delay
addd delay
std TC0
bset TIE, $01 ;enable interrupts on OC0
cli ;enable (global) interrupts

Code Siren Oscillator (2)

41

forever: ldy #50 ; count 50 x 10ms periods
hiloop: ldd TCNT

addd #30000 ; set up OC1 for 10ms delay
std TC1
brclr TFLG1, $02, * ; wait until C1F is set
dbeq y, hiloop ; repeat 50 times
movw #lo_freq, delay ; change to low tone
ldy #50 ; count 50 x 10ms periods

loloop: ldd TCNT
addd #30000 ; set up OC1 for 10ms delay
std TC1
brclr TFLG1, $02, * ; wait until C1F is set
dbeq y, loloop ; repeat 50 times
movw #hi_freq, delay ; change to high tone
bra forever

tc0isr: ldd TC0 ; re-arm OC0
addd delay
std TC0
rti

	CPE 390: Microprocessor Systems�Spring 2018
	What are Timer Functions?
	How Should Timer Functions be Implemented?
	HCS12 Timer System
	HCS12 Timer System (2)
	Timer Block Diagram
	Timer Counter Register
	Timer Counter Registers
	Timer Counter Registers
	Input Capture Function
	TIOS Register
	Registers Associated with Input Capture
	Registers Associated with Input Capture (2)
	Registers Associated with Input Capture (3)
	Summary of Input Capture (Channel 4)
	Applications of Input Capture
	Applications of Input Capture (2)
	Applications of Input Capture (3)
	Example: Period Measurement
	 Steps in Period Measurement
	 Code for Period Measurement
	Example: Pulse-Width Measurement
	 Steps in Pulse-Width Measurement
	 Code for Pulse-Width Measurement
	 Code for Pulse-Width Measurement (2)
	Output-Compare Function
	Output-Compare Registers
	Summary of Output Capture (Channel 4)
	Example: Waveform Generation
	 Steps in Waveform Generation
	 Code for Waveform Generation
	 Example: Waveform Generation with Interrupts
	 Code for Waveform Generation with Interrupts
	 Code for Waveform Generation with interrupts (2)
	 Code for Waveform Generation with interrupts (3)
	Example: Measure Frequency
	 Code Frequency Measurement
	 Code Frequency Measurement
	Example: Siren Oscillator
	 Code Siren Oscillator
	 Code Siren Oscillator (2)

