
CPE 390: Microprocessor Systems
Spring 2018

Lecture 13
Serial Interfaces

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

Why Serial Communications ?

• Parallel data transfer is an efficient way to transmit high
bandwidth data over short distances
– Parallel data requires many I/O pins
– Many I/O devices do not have high enough bandwidth to justify

pin-count
• Data synchronization of parallel data is difficult to

achieve over long distances
– require differential delay between bit lines << data period

• HCS12 supports three serial communication protocols:
– SCI Interface: Asynchronous serial transmission utilizing EIA-

232 standard
– SPI Interface: Synchronous serial link developed by Motorola for

exchange between microcontrollers and peripherals
– I2C Interface: Synchronous serial link developed by Philips for

inter-chip communications in embedded systems
2

Serial Communications Interface (SCI)

• Designed to full-duplex asynchronous data transmission
using RS-232 (EIA-232) standard
– full-duplex means simultaneous transmission in both directions
– asynchronous means no clock is transmitted

• RS-232 was one of the earliest data communications
protocols

3

– first standard developed in 1960
– originally used with teletypes
– serial port on early PC’s

connected to terminals, printers,
modems etc.

– replaced by USB in PC’s and
other consumer equipment

– still used widely in industrial
products

– connects lab EVB board to PC

RS-232 Communications Model

• Originally designed to transfer data over telephone lines
using modems
– Data Terminal Equipment (DTE): computers, terminals
– Data Communications Equipment (DCE): modems, telecom equip.

• Data rates up to 20 kbps
• Link distance to 15 meters
• Full RS-232 interface specifies 22 signals

– 2 serial lines & ground (4)
– modem status & control signals (13)
– backup communications and test (5) 4

DTE DTEDCE DCERS-232 RS-232

computer
or terminal

computer
or terminal

modemmodem

telephone
link

RS-232 DB9 Connector

• Most applications do not require full modem control – use a
simpler DB9 (9-pin) connector

– Transmitted and Received data are the two serial data lines
– DCE ready and DTE ready usually wired to positive voltage just to

indicate presence of live equipment on line
– RTS and CTS can be used as a hardware hand-shake to pause

data when input buffer on receiving side is full
5

Data Carrier Detect

Null Modem

• Most applications of RS-232 today use direct connection of
two DTE’s without intervening modems

• RS-232 standard does not support DTE to DTE connection
• Use a cable that acts as a “null modem”

– cross-connects signals to “fool” both DTE’s into thinking they are
communicating with a DCE (modem)

6

1 DCD
2 RD
3 TD
4 DTR
5 GND
6 DCR
7 RTS
8 CTS

DCD 1
RD 2
TD 3
DTR 4
GND 5
DCR 6
RTS 7
CTS 8

Ascii Codes

• RS-232 links are usually used to transmit ascii characters
• Each character is represented using its 7-bit ascii code

– MSBit is sometimes used to carry a parity bit – used for error detection

7

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS DS RS US

2 ! “ # $ % & ‘ () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ^ _
6 ` a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

LS Hex Digit

MS
Hex
Digit

RS-232 Data Format

• Data is transmitted serially, one character per frame
• Each frame consists of:

– one START bit (0)
– 7 to 8 data bits (least sig. bit first) – frequently ASCII character
– one optional PARITY bit
– one or two STOP bits (1)

• No explicit clock signal
– receiver uses START after line has been idle (1) for at least bit time
– if receiver loses its place, format rapidly pulls back “into sync”

• Transmitter and Receiver must agree on:
– baud rate (how many bit values per second)
– number of data and stop bits and parity 8

Start D0 D1 D2 D3 D4 D5 D6 Parity Stop1 Stop2
0

1

0

1
Frame

RS-232 Electrical Specification

• Voltages of -3 to -25 V with respect to ground are
considered logical ‘1’ (known as the mark condition)

• Voltages of +3 to +25 V with respect to ground are
considered logical ‘0’ (known as space condition)

• Data rates are not specified in standard, but commonly
used rates are 300, 1200, 2400, 9600 and 19200 baud

• Example: Sketch the output of letter ‘g’ (ASCII $67) using a
format of 1 start bit, 8 data bits (7 + odd parity) and 1 stop bit.

9

Start D0 D1 D2 D3 D4 D5 D6 Parity Stop Logical
0

1

Electrical
+5V

–5V

HCS12 SCI Subsystem

• HCS12 may have one or two serial communication
interfaces (SCI0) and SCI1)
– We will only describe SCI0

• SCI uses one START bit, 8 or 9 data bits* and one STOP bit
• SCI supports odd, even or no parity

– parity is inserted in most-significant data bit position
– option of hardware parity check on received data

• SCI shares pins with Parallel Port S
– Receive line TxD0 uses pin PS0
– Transmit line TxD0 uses pin PS1

• SCI supports ready flag polling and interrupts
• SCI line status can be used to wake-up processor

* 8 or 9 data bits means 7 or 8 real data bits plus parity
if no parity is specified, transmitted parity bit is ‘0’

10

HCS12 SCI Block Diagram

• SCI has :
– One 16-bit baud rate register (actually two 8-bit registers SCI-BDH/L)
– Two Control registers (SCI0CR1 and SCI0CR2)
– Two Status registers (SCI0SR1 and SCI0SR2)
– One 16-bit data register (actually two 8-bit registers SCI0DRH/L)

• Upper byte holds MS-bit in 9-bit (8+parity) transmissions
11

÷ 𝟏𝟏𝟏𝟏

SCI Baud Rate Control Register

• SCI uses 16x baud rate
clock to sample incoming
RS-232 waveform

• SBR divides E-clock down
to correct sampling
frequency

12

0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8

7 6 5 4 3 2 1 0

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

7 6 5 4 3 2 1 0

SCI0BDH

SCI0BDL

Desired
Baud Rate

Divisor for
fE = 24 MHz

Divisor for
fE = 8 MHz

300 5000 1667
1200 1250 417
2400 625 208
9600 156 52
19200 78 26𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
16 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑟𝑟𝑏𝑏𝑟𝑟𝑟𝑟

SCI Control Register 1 (SCI0CR1)

13

LOOPS SCWAI RSRC M WAKE ILT PE PT
7 6 5 4 3 2 1 0

Reset value
=$00

LOOPS: Loop-back test select bit (‘0’: disabled, ‘1’: enabled)*

SCWAI: SCI stop in wait mode bit (‘0’: continues in wait, ‘1’: stops in wait)*

RSRC: Receiver source bit in loop-back mode (‘0’: internal loop-back, ‘1’: external)*

M: Data format mode bit (‘0’: 8-bit data, ‘1’: 9-bit data)

WAKE: Wake-up condition bit (‘0’: idle line wakeup, ‘1’: address-mark wakeup)*

ILT: idle line type bit (‘0’: look for idle after start, ‘1’: look for idle after stop)*

PE: Parity enable bit (‘0’: parity disabled, ‘1’: parity enabled)

PT: Parity type bit (‘0’: even parity, ‘1’: odd parity)

* This register controls specialized features of the SCI subsystem – we will not be
using these bits

• In the EVI (lab) board, all bits in this register are set to ‘0’ during normal
serial interaction between the board and the PC

SCI Control Register 2 (SCI0CR2)

14

TIE TCIE RIE ILIE TE RE RWU SBK

7 6 5 4 3 2 1 0
Reset value
=$00

TIE: Transmit interrupt enable bit (‘0’: disabled, ‘1’: enabled)

TCIE: Transmit complete interrupt enable bit (‘0’: disabled, ‘1’: enabled)*

RIE: Receiver full interrupt enable bit (‘0’: disabled, ‘1’: enabled)

ILIE: Idle line interrupt enable bit (‘0’: disabled, ‘1’: enabled)*

TE: Transmitter enable bit (‘0’: disabled, ‘1’: enabled)

RE: Receiver enable bit (‘0’: disabled, ‘1’: enabled)

RWU: Receiver wakeup bit (‘0’: normal operation, ‘1’: specialized wakeup function)*

SBK: Send break* bit (‘0’: normal operation, ‘1’: generate a break code)*

* We will not be using these bits

SCI Status Register 1 (SCI0SR1)

15

TDRE TC RDRF IDLE OR NF FE PF

7 6 5 4 3 2 1 0
Reset value
=$00

TDRE: Transmit data register empty flag (i.e. ready to accept a new character)

TC: Transmit complete flag*

RDRF: Receiver data register full flag (i.e. have a new received character available)

IDLE: Idle line detected flag (i.e. receive line has become inactive)*

OR: Overrun error flag (new character received before previous character read)*

NF: Noise error flag*

FE: Framing error flag (received a ‘0’ when a stop bit was expected)*

PE: Parity error flag*

* We will not be using these bits

SCI Interrupts

• SCI can generate interrupt whenever any of following
flags become set:

• One or more of these interrupt sources may be enabled using
various interrupt enable bits in SCI0CR2

• There is only one interrupt vector associated with each SCI
• When interrupt occurs, ISR must check flags in SCI0SR1 to

determine which type of event caused interrupt
16

TDRE: Transmit data register empty flag (i.e. ready to accept a new character)

TC: Transmit complete flag (i.e. all bits of transmit character have been sent)

RDRF: Receiver data register full flag (i.e. have a new received character available)

IDLE: Idle line detected flag (i.e. receive line has become inactive)

OR: Overrun error flag (new character received before previous character read)

Character Transmission

• To transmit characters, first need to set up SCI
– Select a baud rate by writing SCI0BDH/L
– Write SCI0CR1 to configure word length, parity & any other features
– Enable transmitter by setting TE and optional interrupt enable bits in

SCI0CR2
– A pre-amble of 10 logic ‘1’s will be transmitted

• For each character:
– poll the TDRE flag by reading SCI0SR1 register (or wait for interrupt)
– once flag is set, write next character to SCI data register SCIDRL

• When transmit shift register is empty and SCIDRL is full:
– SCI transfers new data in SCIDRL to transmit shift register and sets

TDRE flag
– SCI shifts data out one bit at a time on TxD pin
– Once shift register is empty, SCI sets TC flag in SCIOSR1 and sets

output pin TxD to ‘1’ (idle)
– Interrupts may be requested on TDRE or TC

17

SCI Transmitter Block Diagram

18

Character Reception

• To receive characters, in addition to transmitter setup:
– Enable receiver by setting RE and optional interrupt enable bits in

SCI0CR2
• For each character:

– poll the RDRF flag by reading SCI0SR1 register (or wait for interrupt)
– once flag is set, read next character from SCI data register SCIDRL

• When receive shift register is full:
– If SCIDRL is empty, SC1 transfers data from receive shift register to

SCIDRL and sets RDRF flag
– If SCIDRL is full, SC1 does not transfer data to SCIDRL and sets

overrun flag OR in SCI0SR1. New data in receiver shift register is
lost. Previous data in SCIDRL is retained.

– If software cannot keep up with receive data rate, some kind of flow
control is required. Flow control can be achieved in hardware
(RTS/CTS lines using extra pins) or via software protocol
(XON/XOFF control characters)

– Interrupts may be requested on RDRF or OR
19

SCI Receiver Block Diagram

20

Example: Output Character Subroutine
• Assuming SCI has already been initialized to send and receive

characters at a specified baud rate, write a subroutine to output
the character in accumulator A to the RS-232 port using the
polling method

21

PS0

HCS12

PS1

DS14C232

(level
shifter)

DB9
Connector

RxD

TxD

GND

0~5V –8 to+8V

include “hcs12.inc”
putcSCI0: brclr SCI0SR1, $80, * ; wait for TDRE to be set

staa SCI0DRL ; output the character
rts

Example: Input Character Subroutine
• Write a subroutine to read a character from SCI0 using the polling

method. The character should be returned in accumulator A.

22

include “hcs12.inc”
getcSCI0: brclr SCI0SR1, $20, * ; wait for RDRF to be set

ldaa SCI0DRL ; read the character
rts

Example: Output String Subroutine
• Write a subroutine to output a NULL-terminated string to the

SCI0. Do not output the NULL. Register X contains a pointer to
the string.

23

include “hcs12.inc”
putsSCI0: ldaa 1, x+ ; get a character and increment pointer

beq done ; end of string?
jsr putcSCIO
bra putsSCIO ; go to next character

done: rts

Example: Input String Subroutine
• Write a subroutine to input a carriage-return (enter) terminated

string from the SCI0. Store the string in a buffer pointed to by the
X register. Echo all typed characters. Echo “carriage-return”
(ENTER) as “line-feed”. Allow the use of back-space to erase
characters

24

CR: EQU $0D ; carriage return (ENTER) code
LF: EQU $0A ; line-feed code
BS: EQU $08 ; back-space code
WS: EQU $20 ; (white) space code

Example: Input String Subroutine (2)

25

getsSCI0: jsr getcSCI0 ; get a character from SCIO
cmpa #CR ; is it carriage return?
beq stend
staa 0,x ; save the character
jsr putcSCI0 ; echo the character
cmpa #BS ; is it a backspace character?
bne nc ; no, continue
dex ; decrement buffer pointer
ldaa #WS ; output space character (to erase previous)
jsr putcSCI0
ldaa #BS ; backspace over space character
jsr putcSCI0
bra getsSCI0 ; go get next character

nc: inx ; increment pointer
bra getsSCI0

stend: ldaa #LF ; echo LF for CR
jsr putcSCI0
clr 0,x ;terminate string with NULL
rts

	CPE 390: Microprocessor Systems�Spring 2018
	Why Serial Communications ?
	Serial Communications Interface (SCI)
	RS-232 Communications Model
	RS-232 DB9 Connector
	Null Modem
	Ascii Codes
	RS-232 Data Format
	RS-232 Electrical Specification
	HCS12 SCI Subsystem
	HCS12 SCI Block Diagram
	SCI Baud Rate Control Register
	SCI Control Register 1 (SCI0CR1)
	SCI Control Register 2 (SCI0CR2)
	SCI Status Register 1 (SCI0SR1)
	SCI Interrupts
	Character Transmission
	SCI Transmitter Block Diagram
	Character Reception
	SCI Receiver Block Diagram
	Example: Output Character Subroutine
	Example: Input Character Subroutine
	Example: Output String Subroutine
	Example: Input String Subroutine
	Example: Input String Subroutine (2)

