
CPE 390: Microprocessor Systems
Spring 2018

Lecture 15
ARM Processor – A RISC Architecture

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

What Makes a Good Instruction Set ?

• Supply functions that are useful to programmer
– taking into account frequency of use

• Efficient implementation in terms of hardware
– logic, registers and memory

• Backward compatibility (think about x86)
• Good compiler target

– high level languages provide data and process abstraction and
support structured programming which improves reliability and
verifiability of software and shortens development time

– compiler bridges semantic gap between high-level language and
machine instructions

– want architecture for which compiled code rivals efficiency &
performance of assembly code

• High performance
– how much work can processor do in given period of time

2

Instruction Set Complexity

• Prior to 1980, computer architects used increasing power
of VLSI (integrated circuits) to provide instructions of
increasing complexity
– each instruction performing a complex sequence of operations

over many clock cycles
– processors were often marketed in terms of how much could be

accomplished in single instruction and how many addressing
modes

– CPU was itself a micro-coded engine in which each machine
instruction was implemented as sequence of microcode
instructions stored in high speed microcode ROM

– some architectures even allowed programmers to extend
instruction set to do application specific operations by writing their
own microcode.

– difficult to target the most complex instructions from compiler (e.g.
VAX has polynomial evaluation and queue insertion instructions)

3

RISC Architectures

• How can we improve microprocessor performance?

1. Use a large number of complicated and powerful
instructions to do more work with each instruction
– historical approach

2. Use small, highly optimized instructions to do less work
per instruction but execute them much faster
– championed by Berkeley RISC project (Patterson & Sequin) 1980
– Reduced Instruction Set Computer
– doesn’t mean reduced # of instructions
– means reduced complexity of instructions

• Alternative (historical) approach became known as CISC
– Complex Instruction Set Computer 4

Evolution of Microprocessor Architecture

• Since 1980, computer architects used increasing power of
VLSI (integrated circuits) to add architectural features
(originally developed for use on large mainframes) to
microprocessors

– Pipelining: execute instruction in stages (e.g. fetch, decode,
execute, store). Start next instruction once current instruction has
completed first stage. Allows for faster clock and overlapped
execution

– Cache Memory: a small fast memory located close to CPU that
holds most recently accessed code or data

– Super-scalar execution: execute multiple instructions in parallel
by dispatching data to multiple functional units (ALU, multiplier etc.)

– Pre-fetch and Branch prediction: guess whether a branch will be
taken and pre-fetch instructions based on that guess

• Each of these is either easier to implement or provides
greater performance impact in RISC architecture 5

CISC vs. RISC

6

CISC processor RISC Processor

Variable length instructions with
many formats

Fixed instruction size with uniform
instruction format

Memory locations can be used as
arithmetic operands. Rich set of
addressing modes

Load/store architecture where
arithmetic instructions operate only on
registers. Simple addressing modes

Small register bank with most
registers having specific purpose Large general purpose register bank

Instruction decoded using microcode
sequences in ROM Hard-wired instruction decode logic

Complex data types supported in
hardware (strings, complex numbers) Few data types supported in hardware

Many clock cycles per instruction Single-cycle execution

Little overlap between instructions Pipelined execution

So who won?

• Highly successful architectures of both types:

• Once an instruction set architecture has been defined and
released as a product, backward compatibility limits scope of
changes to architecture

• Over the years, the line between RISC and CISC has blurred
with each moving to “middle ground” to improve performance.
– RISC chips have leveraged improvements in VLSI to develop more

complex instruction sets that still run at very high speed
– CISC chips have leveraged improvements in VLSI to incorporate

parallelism (pipelining, super-scalar, multicore) into their
architectures 7

RISC CISC
SPARC (SUN) x86/Pentium (Intel)
PowerPC (Motorola, IBM) MC68000 (Motorola / Freescale)
ARM (by license) HCS12 (Motorola / Freescale)
MIPS (by license) PDP/VAX (DEC)

ARM Processor

• ARM is short for Advanced RISC Machines
• Founded in 1990 by Acorn (U.K.), Apple & VLSI

Technology
– goal was to develop high performance low power microprocessor

for embedded applications
• ARM does not make microprocessors

– Intellectual Property (IP) supplier
– microprocessor cores, standard cells, graphics & multimedia

engines
• Industry’s leading supplier of 16/32 bit embedded RISC

processors
– over 90% of embedded 32-bit processors
– over 20 billion ARM cores shipped in products (smart phones,

PDA’s, digital cameras etc.)
– family of processors ARM6, ARM7, ARM9, ARM10, ARM11

8

ARM Architecture

• 32-bit RISC processor core
• 32-bit address and data busses
• Fixed length 32-bit instruction
• 3-stage pipeline (ARM7) and support for cache
• 8-bit and 32-bit data types

– data operations (arithmetic) are all 32-bit
– supports 8-bit and 32-bit data transfer

• Load/store architecture
– does not support data operations directly on memory locations
– data operands must first be loaded into registers and then stored

back into memory to save the results
• Every instruction can be conditionally executed
• Three operand data operations with optional multi-bit shift
• Most instructions executed in single cycle 9

ARM Register Set

• Total of 37 32-bit registers
• 17 visible at any one time

– depends on operating mode
– normal code runs in user mode
– other modes include interrupt mode and

supervisor mode (for operating system calls)
– other modes have their own registers to

minimize data save instructions
• R0-R12 are general purpose registers
• R13 is used as stack pointer (SP)
• R14 is subroutine link register

– holds return address
• R15 is program counter
• R16 is current program status register

– holds condition code bits N, Z, C and V 10

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 (SP)
R14 (LR)
R15 (PC)

R16 (CPSR)

ARM Instruction Set

• Uniform instruction coding
– opcode always in same bit position
– many fields have same meaning across different instruction

types
• Allows faster instruction decoding

11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 I Opcode S Rn Rd Operand2
Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm
Cond 0 0 0 0 1 U A S RdHi RdLo Rs 1 0 0 1 Rm
Cond 0 1 I P U BW L Rn Rd Offset
Cond 1 0 0 P U SW L Rn Register List
Cond 1 0 1 L Offset

Data processing
Multiply
Long Multiply
Load/Store
Ld/St Multiple
Branch

Conditional Execution

• Most instruction sets only allow branches to be executed
conditionally.

• Many branches skip over one or two instructions
• In ARM, all instructions are conditional
• This removes the need for many branches, which stall the

pipeline (3 cycles to refill).
• Allows very dense in‐line code, without branches.

12

HCS12

…
bne skip
inc total

skip: clra
…

ARM

…
addeq r3, r3, #1
sub r0, r0, r0
…

Conditional Codes

• 14 available conditions
– Normal (unconditional) instructions use code AL

13

Code Suffix Flags Meaning
0000 EQ Z set equal
0001 NE Z clear not equal
0010 CS C set unsigned higher or same
0011 CC C clear unsigned lower
0100 MI N set negative
0101 PL N clear positive or zero
0110 VS V set overflow
0111 VC V clear no overflow
1000 HI C set and Z clear unsigned higher
1001 LS C clear and Z set unsigned lower or same
1010 GE N equals V greater or equal
1011 LT N not equal V less than
1100 GT Z clear and N equals V greater than
1101 LE Z set or (N not equal V) less than or equal
1110 AL --- always

Data Processing Instructions

• ARM data processing instructions specify up to 3 registers
– Destination (result) register plus two operand registers
– no memory locations – only registers
– Immediate bit and update condition code bit

• Condition codes are only set if S bit is ‘1’
• Operand2 contains either:

– register address (if I = ‘0’) OR
– immediate value (if I = ‘1’)
– together with a shift specification

14

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 I Opcode S Rn Rd Operand2

Destination register
1st operand register
Set condition codes
Immediate 2nd operand

Barrel Shifter

• ALU includes a barrel shifter than can shift operand 2 up
to 32 bits to the left or right

15

Barrel
Shift

operand1 operand2

result

• Operand 2 can either be:

• Register shifted by
– immediate constant OR
– value in another register
– logical / arithmetic / rotate
– left/right

• 8-bit immediate value
– rotated right through an even

number of positions (2-32)

Data Processing Opcodes

16

Opcode Mnemonic Flags

ARITH

ADD operand1 + operand2
ADC operand1 + operand2 + carry
SUB operand1 – operand2
SBC operand1 – operand2 – carry + 1
RSB operand2 – operand1
RSC operand2 – operand1 – carry + 1

LOGIC
AND operand1 AND operand2
EOR operand1 EXOR operand2
ORR operand1 OR operand2
BIC operand1 AND NOT operand2

TEST

CMP same as SUB but result not written
CMN same as ADD but result not written
TST same as AND but result not written
TEQ same as EOR but result not written

MOVE MOV operand2 (operand1 is ignored)
MVN NOT operand2 (operand1 is ignored)

Data Processing Examples

• ADD r0, r1, r2 ; r0 = r1 + r2

• SUBGT r3, r3, #1 ; r3 = r3 – 1 if GT true

• RSBLES r4, r4, #5 ; r4 = 5 – r4 if LE & set CC’s

• TSTEQ r2, #6 ; if Z=0, form (r2 AND #6) & set CC’s

• AND r0, r1, r2 ; r0 = r1 AND r2

• BICHI r2, r3, #7 ; if HI, r2 = r3 with 3 LSBits set to 0

• MVNEQ r1, #0 ; if Z=1, set r1 = -1

• ADD r1, r0, r0, LSL #2 ; r1 = r0 + (r0*4)

• MOV r3, #0x40, ROR #26 ; set r3 = 4096

17

Multiply Instruction

• ARM does signed/unsigned 32 x 32 multiply
– produces signed/unsigned least significant 32-bit result

• MUL{<cond>}{S} Rd, Rm, Rs ; Rd = Rm * Rs

• If A bit is set, we get signed/unsigned multiply accumulate:

• MULA{<cond>}{S} Rd, Rn, Rm, Rs ; Rd = (Rm * Rs) + Rn

• Multiply does not normally complete in one cycle
– cycle count depends on implementation
– early termination if only ‘0’s left in multiplier 18

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Long Multiply Instruction

• Produces signed and unsigned 64-bit result

• Multiply long:
RdHi:RdLo = Rm * Rs

• Multiply accumulate long:
RdHi:RdLo = Rm * Rs + RdHi:RdLo

• Available in signed and unsigned versions:
UMULL{<cond>}{S} RdLo,RdHi,Rm,Rs
UMLAL{<cond>}{S} RdLo,RdHi,Rm,Rs
SMULL{<cond>}{S} RdLo,RdHi,Rm,Rs
SMLAL{<cond>}{S} RdLo,RdHi,Rm,Rs

19

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 0 0 1 U A S RdHi RdLo Rs 1 0 0 1 Rm

Load/Store Instructions

• These simply move data between registers and memory

• All load/stores can be conditionally executed 20

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 1 I P U B W L Rn Rd Offset

Source/Destination register

Base register
Load/Store bit
Write back bit

Byte/Word bit

Index Up/Down bit

Pre/Post indexing bit

Immediate offset bit

Load/Store Format

• LDR load register with word from memory
• LDRB load register with byte from memory
• STR store register to word in memory
• STRB store register to byte in memory

<LDR|STR>{<cond>}{<size>} Rd, <address>

• Memory address is formed using variety of addressing
modes

• All address modes are indirect via register
– no extended (direct addressing mode) since cannot fit 32-bit

address into instruction
– no immediate addressing mode (constants must be loaded into

memory within offset distance of PC) 21

Memory Addressing Modes

• Register indirect addressing
LDR r0, [r1] ; load r0 with contents of memory

; pointed to by r1
• Base plus immediate index addressing

LDR r0, [r1, #2] ; load r0 with contents of memory
; located at address [r1]+2

• Base plus register index addressing
STR r0, [r1, r2, LSL #2] ; store r0 to memory location

; whose address is [r1] + ([r2]<<2)
• Auto increment pre-index addressing

LDR r0, [r1, #4]! ; load r0 with contents of memory
; located at address [r1]+4 and update
; r1 to new address

• Auto increment post-index addressing
LDR r0, [r1], #4 ; load r0 with contents of memory

; located at address [r1] and then
; increment r1 by 4 22

Branch Instructions

• Conditional execution is good for replacing branches
around small number of instructions
– not efficient for branches involving large numbers of instructions
– need to conditionally execute all instructions related to both branch

outcomes
• ARM provides Branch (B) and Branch with Link (BL)

• Offset provides 24-bit signed word offset relative to PC
– do not need byte offset since instruction are all 32-bit word aligned

• Provides branch range of ±32 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
• Conditional branch just uses regular condition field
• Use labels, assembler calculates offset 23

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 1 0 1 L Offset

Subroutine Call

• Branch with Link provides subroutine linkage
– BL{cond} sub_label

• [PC] is stored in link register R14
• Return simply restores PC from link register

– mov PC, R14

• For nested subroutine calls, programmer must save return
address by moving from LR to stack

• Large number of registers could make saving and restoring
registers very slow

• ARM provides Load/Store Multiple instruction (LDM/STM)

24

Block Data Transfer (LDM/STM)

• LDM, STM: load and store any subset of registers

– loaded from and stored into contiguous block of memory relative
to a base register

– by using SP as base register and auto-indexed addressing, we
can push to or pop from stack any subset of registers 25

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 1 0 0 P U S W L Rn Register List

Base register
Load/Store bit
Write back bit

Load PSR bit

Index Up/Down bit

Pre/Post indexing bit

ARM Pipeline

• ARM uses a 3-stage pipeline to speed instruction execution
– Fetch: get next instruction from memory
– Decode: Determine operand registers and ALU operation
– Execute: Read registers, perform ALU operation and store registers

• Allows several instructions to be executing simultaneously

• Needs “bypass” paths in CPU to avoid reading new value
from a register before it has been written

26

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Instruction n:

Instruction n+1:

Instruction n+2:

ARM Processors in Embedded Systems

• As stand-alone microcontrollers
– STMicro, Atmel, Samsung, Freescale etc.

• Embedded in Applications Specific Standard Product
(ASSP)
– Atmel: Bluetooth controller
– Conexant: Cable modem
– LSI Logic: Ethernet switch
– Philips: GSM processor
– Qualcomm: CDMA baseband
– Samsung: Ink-jet printer

• Embedded in FPGA
– Altera and Xilinx
– Provide mix of software and programmable hardware
– Altera Cyclone FPGA’s can include 800MHz dual-core ARM9

processor with 32KB instruction & data caches 27

	CPE 390: Microprocessor Systems�Spring 2018
	What Makes a Good Instruction Set ?
	Instruction Set Complexity
	RISC Architectures
	Evolution of Microprocessor Architecture
	CISC vs. RISC
	So who won?
	ARM Processor
	ARM Architecture
	ARM Register Set
	ARM Instruction Set
	Conditional Execution
	Conditional Codes
	Data Processing Instructions
	Barrel Shifter
	Data Processing Opcodes
	Data Processing Examples
	Multiply Instruction
	Long Multiply Instruction
	Load/Store Instructions
	Load/Store Format
	Memory Addressing Modes
	Branch Instructions
	Subroutine Call
	Block Data Transfer (LDM/STM)
	ARM Pipeline
	ARM Processors in Embedded Systems

