CPE 390: Microprocessor Systems

Spring 2018

Lecture 2
 Digital Logic Basics

Bryan Ackland

Department of Electrical and Computer Engineering Stevens Institute of Technology

Hoboken, NJ 07030

Digital Abstraction

- Most physical variables are continuous
- voltage on a wire
- frequency of an oscillation
- position of a mass

- Computation on continuous variables subject to noise and distortion
- any computation will have finite error
- errors will accumulate
- Digital abstraction considers discrete subset of values
- output can be "restored" to correct value
- error free (with very high probability)

Digital Discipline: Binary Values

- Early computing engines used multi-value digital variables
- Babbage engine used gears with 10 different positions
- Simplified base ${ }_{10}$ arithmetic
- Very difficult to build electronic circuits that restore to multiple (>2) discrete values
- Very easy to build circuits that restore to two values
- Use two discrete (binary) values: 0 and 1

Transfer function of a simple CMOS inverter:

Application of Binary Values

- Binary signals can be used to represent logical values:

$$
-\quad \mathbf{0}=\text { FALSE } \quad \mathbf{1}=\text { TRUE }
$$

- Binary signals can be used to represent numerical values:
- using base ${ }_{2}$ representation
- each binary signal represents one binary digit (bit)
- Binary signals can be used to represent any other variable that can only take on one of two different values
- e.g. black/white, on/off, up/down
- In digital electronic circuits:
- $\mathbf{0}$ is usually low voltage (ground, VSS, 0 volts)
- $\mathbf{1}$ is usually high voltage (power supply, VDD, 3.3 volts)
- Beauty of (binary) digital abstraction is that the designer does not need to know the (physical) implementation details
- can just focus on 0's and 1's

Formal (Philosopher's) Logic

A: All dogs are warm blooded
B: Molly is a dog
C: Molly is warm blooded

\mathbf{A}	\mathbf{B}	\mathbf{C}
T	T	\mathbf{T}
T	F	$\boldsymbol{?}$
F	T	$\boldsymbol{?}$
F	F	$\boldsymbol{?}$

If (A is true) and if (B is true), then (C is true)

What if B is not true. Does that make C false?
e.g. What if Molly is a cat?

Formal logic does not address cases not explicitly covered in the logic statement

Digital (Boolean) Logic

In digital logic, there is always an implied else clause

If (A is true) and if (B is true),
then (C is true); else (C is false)
A: If you have come to a complete stop
B : There is no traffic coming
C: You may proceed
If (A is false) or if (B is false),
then (C is false); else (C is true)

\mathbf{A}	\mathbf{B}	\mathbf{C}
1	1	$\mathbf{1}$
1	0	$\mathbf{0}$
0	1	$\mathbf{0}$
0	0	$\mathbf{0}$

In digital logic, usually use ' 1 ' for true, ' 0 ' for false

AND gate

logic symbol

Boolean equation

$$
\begin{aligned}
& \text { C } \quad \begin{array}{l}
\mathrm{C}=\mathrm{A} * \mathrm{~B} \\
\mathrm{C}
\end{array}=\mathrm{A} . \mathrm{B}
\end{aligned}
$$

truth table

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	$\mathbf{0}$
0	1	$\mathbf{0}$
1	0	$\mathbf{0}$
1	1	$\mathbf{1}$

When more than two inputs, the output equals ' 1 ' only when all inputs are equal to ' 1 '

OR gate

logic symbol

Boolean equation

$$
C=A+B
$$

truth table

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	$\mathbf{0}$
0	1	$\mathbf{1}$
1	0	$\mathbf{1}$
1	1	$\mathbf{1}$

When more than two inputs, the output equals ' 1 ' when any input is equal to ' 1 '

Inverter or NOT gate

logic symbol

truth table

Boolean equation

\mathbf{A}	\mathbf{Z}
0	$\mathbf{1}$
1	$\mathbf{0}$

$$
\begin{aligned}
& Z=\bar{A} \\
& \text { or } Z=A^{\prime}
\end{aligned}
$$

NAND gate

logic symbol

equivalent to:

Boolean equation

$$
\mathrm{C}=\overline{\mathrm{A} * \mathrm{~B}}
$$

$$
\text { or } \mathrm{C}=\overline{\mathrm{A} \cdot \mathrm{~B}}
$$

truth table

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	$\mathbf{1}$
0	1	$\mathbf{1}$
1	0	$\mathbf{1}$
$\mathbf{1}$	1	$\mathbf{0}$

When more than two inputs, the output equals ' 0 ' only when all

NOR gate

logic symbol

equivalent to:

Boolean equation

$$
C=\overline{A+B}
$$

truth table

\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	$\mathbf{1}$
0	1	$\mathbf{0}$
1	0	$\mathbf{0}$
1	1	$\mathbf{0}$

When more than two inputs, the output equals ' 0 ' when any input is

XOR and XNOR gate

$C=A \oplus B$

XNOR symbol

$D=\overline{A \oplus B}$
XOR/XNOR truth table

When more than two inputs, the output of XOR equals ' 1 ' only when an odd number of inputs are equal to ' 1 '

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
0	0	$\mathbf{0}$	$\mathbf{1}$
0	1	$\mathbf{1}$	$\mathbf{0}$
1	0	$\mathbf{1}$	$\mathbf{0}$
1	1	$\mathbf{0}$	$\mathbf{1}$

Creating More Complex Logic Functions

$Z=[(A . B . C)+D]+[D . \overline{(E+F)}]$

Some Useful Formulae

$A+' 0 '=$
$A+' 1 '=$
$A+A=$
$A+\bar{A}=$
$A \oplus ' 0 '=$
$A \oplus ' 1 '=$
$A \oplus A=$
$A \oplus \bar{A}=$
$A \cdot ' 0$ ' =
$A \cdot{ }^{\prime}$ ' =
$A \cdot A=$
$A \cdot \bar{A}=$

$$
\begin{aligned}
& A \oplus B=(A \cdot \bar{B})+(\bar{A} \cdot B) \\
& \overline{A \oplus B}=(A \cdot B)+(\bar{A} \cdot \bar{B})
\end{aligned}
$$

Some Useful Formulae

$A+' 0 '=A$
$A+' 1 '=' 1 '$
$A+A=A$
$A+\bar{A}=' 1 '$
$A \oplus{ }^{\prime} O^{\prime}=A$
A • 'O' = '0'
$A \cdot{ }^{\prime} 1^{\prime}=A$
$A \cdot A=A$
$A \cdot \bar{A}={ }^{\prime} O^{\prime}$

$$
\begin{aligned}
& A \oplus B=(A \cdot \bar{B})+(\bar{A} \cdot B) \\
& \overline{A \oplus B}=(A \cdot B)+(\bar{A} \cdot \bar{B})
\end{aligned}
$$

Multiplexer

- $Z=\bar{S} . A+S . B$

4-input Multiplexer

- $z=\bar{S}_{0} \cdot \bar{S}_{1} \cdot I_{0}+S_{0} \cdot \bar{S}_{1} \cdot I_{1}+\bar{S}_{0} \cdot S_{1} \cdot I_{2}+S_{0} \cdot S_{1} \cdot I_{3}$

S_{1}	$\mathrm{~S}_{0}$	Z
0	0	I_{0}
0	1	I_{1}
1	0	$\mathrm{I}_{\mathbf{2}}$
1	1	I_{3}

- Typically, an 2^{N}-way multiplexor will use N select signals to choose between one of 2^{N} inputs

Combinational vs. Sequential Logic

- A combinational circuit (logic) is one in which the output depends only on the current value of the inputs
- All of the logic gates we have described so far (AND, NOR, XOR, multiplexer etc.) are combinational
- If you know the inputs you know the outputs
- A sequential circuit (logic) is one in which the output depends on the current value and previous values of the inputs
- Output depends on the sequence of applied inputs
- Sequential circuits include some form of memory of previous inputs that modify output values
- We often call these remembered values the state of the circuit or system.
- All sequential circuits include some form of feedback loop to feed the remembered state back into the inputs of the circuit.

Memory - the cross coupled inverter

- Almost all form of digital memory are built around the idea of having two inverters (NOT gates) connected in a feedback loop.

- Positive feedback drives circuit into one of two stable states
- Either: $(\mathrm{Y}=1, \mathrm{Z}=0)$ OR $(\mathrm{Y}=0, \mathrm{Z}=1)$
- Circuit will hold state indefinitely
- How do we change the state?

RS Latch

- Simple "writable" storage element

$\mathbf{R b}$	$\mathbf{S b}$	\mathbf{Q}
0	1	0
1	0	1
1	1	no change
0	0	illegal

- Normally, Sb and Rb are both 1
- When $\mathrm{Sb}=0, \mathrm{Q}$ is set to 1
- When $\mathrm{Rb}=0, \mathrm{Q}$ is reset to 0

D Latch

- When Gate $=1$, latch is transparent
- D flows through to Q like a buffer
- When gate $=0$, the latch is opaque
- Q holds its old value independent of D

\mathbf{D}	Gate	\mathbf{Q}
0	1	0
1	1	1
0	0	no change
1	0	no change

- a.k.a. transparent latch or level-sensitive latch

D Flip-flop

clk	\mathbf{D}	\mathbf{Q}
0	X	no change
1	X	no change
\uparrow	1	1
\uparrow	0	0

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. edge-triggered flip-flop, master-slave flip-flop

Number Systems

Decimal (base ${ }_{10}$)

$$
A=\sum_{i=0}^{n-1} a_{i} \cdot 10^{i}
$$

$$
\begin{array}{lll}
10^{2} & 10^{1} & 10^{0}
\end{array}
$$

$$
\begin{array}{lll}
1 & 5 & 7
\end{array}
$$

$$
=(1 \times 100)+(5 \times 10)+(7 \times 1)
$$

Binary (base ${ }_{2}$)

$$
A=\sum_{i=0}^{n-1} a_{i} \cdot 2^{i}
$$

$\begin{array}{llllllll}2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$
$\begin{array}{llllllll}1 & 0 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$
$=128+0+0+16+8+4+0+1=157_{10}$

Powers of 2

- $2^{0}=1$
- $2^{1}=2$
- $2^{2}=4$
- $2^{3}=8$
- $2^{4}=16$
- $2^{5}=32$
- $2^{6}=64$
- $2^{7}=128$
- $2^{8}=256$
- $2^{9}=512$
- $2^{10}=1024$
- $2^{11}=2048$
- $2^{12}=4096$
- $2^{13}=8192$
- $2^{14}=16384$
- $2^{15}=32768$
- $2^{16}=65536$
- handy to memorize up to 2^{10}

Range of Binary Numbers

- N-digit decimal number
- How many values?
- Range?
- Example: 3-digit decimal number:
- N-bit binary number
- How many values?
- Range:
- Example: 3-bit binary number:

Hexadecimal Numbers

- For humans, its clumsy to always work in binary
- just too many bits!
- Divide a binary number into 4-bit groupings and represent each 4-bits by a single hexadecimal (base ${ }_{16}$) digit.

Binary:	0010	1001	0101	0111
Hex:	2	9	5	7

- But, in hexadecimal, each digit can have a value of $0-15_{10}$!!
- We need new symbols to represent the values $10_{10}-15_{10}$
- Use symbols A, B, C, D, E and F

Hexadecimal Numbers

Bits, Bytes and Nibbles...

- Bits:
(8-bit binary)

- Bytes \& Nibbles:
(8-bit binary)

\[

\]

- Bytes:
(32-bit hex)

Addition

- Decimal:

$$
\begin{array}{r}
3734 \\
+5168
\end{array}
$$

- Binary:

$$
\begin{array}{r}
1011 \\
+0011
\end{array}
$$

- Hex:

$$
\begin{array}{r}
1 \text { A } 37 \\
+09 F 6
\end{array}
$$

Overflow

- Note that if we add two n -bit numbers, we will (in general) get an ($n+1$) bit result:

Signed Binary Representation

How do we deal with negative numbers?

Two common approaches:

- Sign-magnitude representation
- Two's complement representation

Sign-Magnitude Representation

- One sign bit plus $\mathrm{n}-1$ magnitude bits
- MSBit is the sign bit:
- MSB=0 means positive number
- MSB=1 means negative number

$$
A=(-1)^{a^{n-1}} \times \sum_{i=0}^{n-2} a_{i} .2^{i}
$$

- for example, for $n=8$:

$$
\begin{aligned}
& \begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array} \\
& =+1 \times(0+0+16+0+4+2+1)=23 \\
& \begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array} \\
& =-1 \times(0+0+16+0+4+2+1)=-23
\end{aligned}
$$

- n-bit sign-magnitude number can take on values
$-\left(2^{n-1}-1\right)$ to $\left(2^{n-1}-1\right)$

Problems with Sign-Magnitude

1. Addition doesn't work

- for example, 4-bit addition of (-5) and (+2)

$$
\begin{aligned}
& 1101 \\
& \begin{array}{r}
0010 \\
\hline
\end{array} \\
& \begin{array}{llll}
1 & 1 & 1 & \left.\left.=-7{ }_{10} \text { (incorrect) }\right) \text { (ind }\right)
\end{array}
\end{aligned}
$$

2. Two representations of zero ($\pm 0)$:

$$
\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}
$$

Two's Complement Representation

- MSBit has value $\left(-2^{n-1}\right)$:

$$
A=-\left(a_{n-1} \cdot 2^{n-1}\right)+\sum_{i=0}^{n-2} a_{i} \cdot 2^{i}
$$

- for example, $n=8$:

$$
\begin{aligned}
& \begin{array}{llllllll}
2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}
\end{array} \\
& \begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array} \\
& =0+0+0+16+0+4+2+1=23
\end{aligned}
$$

$$
\begin{array}{r}
\mathbf{1} \mathbf{1} \mathbf{1} \mathbf{0}
\end{array} \mathbf{1} \mathbf{0} \begin{aligned}
& \mathbf{0} \\
& \mathbf{1} \\
& =
\end{aligned}
$$

- n-bit two's complement number can take on values $\left(-2^{n-1}\right)$ to $\left(2^{n-1}-1\right)$

Two's Complement

- To form two's complement (i.e. flip the sign) of number A, either
- Working from LSB to MSB, complement (invert) all bits after (to the left of) first ' 1 ':
- e.g. $A=0101 \quad(=5)$
complementing all bits to left of first ' 1 ' (occurs at bit 0):
$-\mathrm{A}=1011(=-5)$
OR
- Invert all bits in A and add 1:

$$
-\mathrm{A}=\overline{\mathrm{A}}+1=1010+1=1011(=-5)
$$

Convenience of Two's Complement

1. MSB still indicates sign

2. Addition does work

$$
\begin{aligned}
& 1011-55_{10} \\
& \begin{array}{r}
+0010 \\
\hline 1101
\end{array}
\end{aligned}
$$

3. Only one representation of zero: 0000

Unsigned Number Wheel

Discontinuity at limits of numerical representation (0 and 15)

Sign-Magnitude Number Wheel

Two discontinuities:
at transitions around zero

Twos Complement Number Wheel

Discontinuity at limits of numerical representation (-8 and +7)

Positive and Negative Hexadecimal Numbers

- If A is a 4-digit unsigned hexadecimal number
- What is the smallest value (in hex) that A can be and what is its decimal equivalent?
- What is the largest value (in hex) that A can be and what is its decimal equivalent?
- If B is a 4-digit signed hexadecimal number
- What is the smallest value (in hex) that B can be and what is its decimal equivalent?
- What is the largest value (in hex) that B can be and what is its decimal equivalent?

Busses

- Frequently useful to group a number of signals into a group as a bus:
- e.g. A is a 16 -bit bus:

- represented as
or

- Bus may carry a binary value (with a LSB and a MSB)
- Or just a collection of non-numerically related bits
- e.g. binary instruction

Registers

- When we want to "remember" an N-bit value...
- may be numerical value, instruction, code, address etc.
- We often group N D-flip-flops together to capture and store the value on the rising edge of a common clock
- We call this an N -bit register
- e.g. 16-bit register

