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Digital Abstraction

• Most physical variables are continuous
– voltage on a wire
– frequency of an oscillation
– position of a mass

• Computation on continuous variables subject to noise and 
distortion
• any computation will have finite error
• errors will accumulate

• Digital abstraction considers discrete subset of values
• output can be “restored” to correct value
• error free (with very high probability)
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Digital Discipline: Binary Values

• Early computing engines used multi-value digital variables
– Babbage engine used gears with 10 different positions
– Simplified base10 arithmetic

• Very difficult to build electronic circuits that restore to 
multiple (>2) discrete values

• Very easy to build circuits that restore to two values
• Use two discrete (binary) values: 0 and 1
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Transfer function of a 
simple CMOS inverter:

input

output



Application of Binary Values

• Binary signals can be used to represent logical values:
– 0 = FALSE         1 = TRUE

• Binary signals can be used to represent numerical values:
– using base2 representation
– each binary signal represents one binary digit (bit)

• Binary signals can be used to represent any other variable 
that can only take on one of two different values
– e.g.   black/white,   on/off,   up/down

• In digital electronic circuits:
– 0 is usually low voltage (ground, VSS, 0 volts)
– 1 is usually high voltage (power supply, VDD, 3.3 volts)

• Beauty of (binary) digital abstraction is that the designer does 
not need to know the (physical) implementation details
– can just focus on 0’s and 1’s
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Formal (Philosopher’s) Logic

A: All dogs are warm blooded
B: Molly is a dog
C: Molly is warm blooded

If (A is true) and if (B is true), then (C is true)

What if B is not true. Does that make C false?
e.g. What if Molly is a cat?

Formal logic does not address cases not explicitly 
covered in the logic statement
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A B C
T T T
T F ?
F T ?
F F ?



Digital (Boolean) Logic

In digital logic, there is always an implied 
else clause 

If (A is true) and if (B is true),
then (C is true); 

A: If you have come to a complete stop
B: There is no traffic coming
C: You may proceed

If (A is false) or if (B is false),
then (C is false); else (C is true)

In digital logic, usually use ‘1’ for true, ‘0’ for 
false
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A B C
T T T
T F F
F T F
F F F

A B C
1 1 1
1 0 0
0 1 0
0 0 0

else (C is false)



AND gate

When more than two inputs, the output equals ‘1’ only
when all inputs are equal to ‘1’
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A B C

0 0 0

0 1 0

1 0 0

1 1 1

A
B

C

logic symbol

Boolean equation

C = A*B
or C = A.B

truth table



OR gate

When more than two inputs, the output equals ‘1’ 
when any input is equal to ‘1’
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A B C

0 0 0

0 1 1

1 0 1

1 1 1

A
B

C

logic symbol

Boolean equation

C = A+B

truth table



Inverter or NOT gate
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A Z

0 1

1 0

A Z

logic symbol

Boolean equation

truth table

Z = A
or Z = A'



NAND gate

When more than two inputs, the 
output equals ‘0’ only when all 
inputs are equal to ‘1’
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A B C

0 0 1

0 1 1

1 0 1

1 1 0

A
B

C

logic symbol

Boolean equation

C = A*B

or C = A.B

truth table

equivalent to:

A
B

C



NOR gate

When more than two inputs, the 
output equals ‘0’ when any input is 
equal to ‘1’
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A B C

0 0 1

0 1 0

1 0 0

1 1 0

A

B
C

logic symbol

Boolean equation truth table

equivalent to:

A
B

C

C = A+B



D = A⊕B

XOR and XNOR gate

When more than two inputs, the output 
of XOR equals ‘1’ only when an odd 
number of inputs are equal to ‘1’
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A B C D

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

A
B

C

XOR symbol

C = A⊕B

XOR/XNOR truth table

XNOR symbol

A
B

D



Creating More Complex Logic Functions
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A
B
C

D

E
F

Z

Z=[(A.B.C) + D] + [D.(E+F)]



Some Useful Formulae
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A + ‘0’ = 

A + ‘1’ = 

A + A = 

A + A = 

A • ‘0’ = 

A •‘1’ =

A • A = 

A • A = 

A ⊕ ‘0’ = 

A ⊕ ‘1’ =

A ⊕ A = 

A ⊕ A = 

A ⊕ B = (A • B) + (A • B) 

A ⊕ B = (A • B) + (A • B) 



Some Useful Formulae
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A + ‘0’ = A

A + ‘1’ = ‘1’

A + A = A

A + A = ‘1’

A • ‘0’ = ‘0’

A •‘1’ = A

A • A = A

A • A = ‘0’

A ⊕ ‘0’ = A

A ⊕ ‘1’ = A

A ⊕ A = ‘0’

A ⊕ A = ‘1’

A ⊕ B = (A • B) + (A • B) 

A ⊕ B = (A • B) + (A • B) 
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• Z = S.A + S.B

Multiplexer

A

B

S
Z

S A B Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

S A B Z

0 0 - 0

0 1 - 1

1 - 0 0

1 - 1 1

S Z

0 A

1 B

A

B

0

1

S

Z
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4-input Multiplexer

S1 S0 Z

0 0 I0
0 1 I1
1 0 I2
1 1 I3

• Z = S0.S1.I0 + S0.S1.I1 + S0.S1.I2 + S0.S1.I3

• Typically, an 2N-way multiplexor will use N select signals 
to choose between one of 2N inputs

I0 00

S1

Z
01

10

11

S0

I1
I2
I3
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Combinational vs. Sequential Logic

• A combinational circuit (logic) is one in which the output 
depends only on the current value of the inputs
– All of the logic gates we have described so far (AND, NOR, 

XOR, multiplexer etc.) are combinational
– If you know the inputs you know the outputs

• A sequential circuit (logic) is one in which the output 
depends on the current value and previous values of the 
inputs
– Output depends on the sequence of applied inputs 
– Sequential circuits include some form of memory of previous 

inputs that modify output values
– We often call these remembered values the state of the circuit or 

system.
– All sequential circuits include some form of feedback loop to feed 

the remembered state back into the inputs of the circuit.



19

Memory – the cross coupled inverter

• Almost all form of digital memory are built around the 
idea of having two inverters (NOT gates) connected in a 
feedback loop.

• Positive feedback drives circuit into one of two stable 
states

• Either:  (Y=1, Z=0)  OR (Y=0, Z=1)
– Circuit will hold state indefinitely

• How do we change the state?

Z

Y



RS Latch
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• Simple “writable” storage element

• Normally, Sb and Rb are both 1

• When Sb=0, Q is set to 1
• When Rb=0, Q is reset to 0

Sb

Rb

Q Rb Sb Q
0 1 0

1 0 1

1 1 no change

0 0 illegal



D Latch
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• When Gate = 1, latch is transparent
• D flows through to Q like a buffer
• When gate = 0, the latch is opaque
• Q holds its old value independent of D
• a.k.a. transparent latch or level-sensitive latch

D
Latch

D

Gate

Q

D Gate Q
0 1 0

1 1 1

0 0 no change

1 0 no change

D

CLK

Q

Gate



D Flip-flop
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• When CLK rises, D is copied to Q
• At all other times, Q holds its value
• a.k.a. edge-triggered flip-flop, master-slave flip-flop

clk D Q

0 X no change

1 X no change

↑ 1 1

↑ 0 0

D
flip-flop

D Q

clk

D

CLK

Q
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Number Systems

Decimal (base10 )

𝐴𝐴 = �
𝑖𝑖=0

𝑛𝑛−1

𝑎𝑎𝑖𝑖 . 10𝑖𝑖

1    0    0    1    1    1    0 1
27 26 25 24 23 22 21 20

=128+ 0+ 0 +16 +8 + 4 + 0 + 1 =15710

𝐴𝐴 = �
𝑖𝑖=0

𝑛𝑛−1

𝑎𝑎𝑖𝑖 . 2𝑖𝑖

Binary (base2 )

1      5 7
102 101 100

= (1x100)+(5x10)+(7x1)
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Powers of 2

• 20 = 1
• 21 = 2
• 22 = 4
• 23 = 8
• 24 = 16
• 25 = 32
• 26 = 64
• 27 = 128
• 28 = 256

• 29 = 512
• 210 = 1024
• 211 = 2048
• 212 = 4096
• 213 = 8192
• 214 = 16384
• 215 = 32768
• 216 = 65536
• handy to memorize up to 210
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Range of Binary Numbers

• N-digit decimal number 
– How many values? 
– Range?  
– Example: 3-digit decimal number: 

• N-bit binary number
– How many values?
– Range: 
– Example: 3-bit binary number:
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Hexadecimal Numbers

• For humans, its clumsy to always work in binary
– just too many bits!

• Divide a binary number into 4-bit groupings and represent 
each 4-bits by a single hexadecimal (base16) digit.

• But, in hexadecimal, each digit can have a value of 0 – 1510 !!
• We need new symbols to represent the values 1010 – 1510

• Use symbols A, B, C, D, E and F

Binary:  0010  1001  0101  0111

Hex:         2        9        5        7



Hexadecimal Numbers

• For example:

4AF16 =

0100 1010 11112

=    (4 x 256) 
+ (10 X 16)
+ (15 x 1) 

=     119910

27
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Bits, Bytes and Nibbles…

• Bits:
(8-bit binary)

• Bytes & Nibbles:
(8-bit binary)

• Bytes:
(32-bit hex)

1  0  0  1  0  1  1  0
most

significant
bit (MSB)

least
significant
bit (LSB)

1  0  0  1  0  1  1  0
byte (8 bits)

nibble
(4 bits)

3  A  C  F  2  4  D  7

MSbyte LSbyte
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Addition

• Decimal:

• Binary:

• Hex:

3 7 3 4
+ 5 1 6 8

1 0 1 1
+ 0 0 1 1

1 A 3 7
+ 0 9 F 6
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Overflow

• Note that if we add two n-bit numbers, we will (in general) get
an (n+1) bit result:

1 0 1 0
+   0 1 1 1

1 0 0 0 1

1  1  1           carries

overflow



How do we deal with negative numbers?

Two common approaches:

• Sign-magnitude representation

• Two’s complement representation

Signed Binary Representation



• One sign bit plus n-1 magnitude bits
• MSBit is the sign bit:

– MSB=0 means positive number
– MSB=1 means negative number

• for example, for n=8:

• n-bit sign-magnitude number can take on values              
–(2n-1-1) to (2n-1-1)
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Sign-Magnitude Representation

𝐴𝐴 = −1 𝑎𝑎𝑛𝑛−1 × �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖 . 2𝑖𝑖

0    0    0    1    0    1    1    1
=   +1 x (0 + 0 +16 +0 + 4 + 2 + 1)  =  23

1 0    0    1    0    1    1    1
=   –1 x (0 + 0 +16 +0 + 4 + 2 + 1)  =  – 23



1. Addition doesn’t work
– for example, 4-bit addition of  −5 𝑎𝑎𝑎𝑎𝑎𝑎 (+2)

2. Two representations of zero (±0):
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Problems with Sign-Magnitude

1  1  0  1
+ 0  0  1  0

1  1  1 1    = −710 (𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

0  0  0  0

1  0  0  0



• MSBit has value (−2𝑛𝑛−1) :

• for example, n=8:

• n-bit two’s complement number can take on values              
(-2n-1) to (2n-1-1) 34

Two’s Complement Representation

1    1    1    0    1    0    0    1

27 26 25 24 23 22 21 20

=  -128 +64+32 +0 +8 + 0 + 0 + 1  =  – 23

𝐴𝐴 = − 𝑎𝑎𝑛𝑛−1. 2𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖 . 2𝑖𝑖

0    0    0    1    0    1    1    1
=     0 + 0 + 0 +16 +0 + 4 + 2 + 1  =  23
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Two’s Complement

• To form two’s complement (i.e. flip the sign) of number A, 
either

• Working from LSB to MSB, complement (invert) all bits 
after (to the left of) first ‘1’:
– e.g.  A = 0101  (= 5)
complementing all bits to left of first ‘1’ (occurs at bit 0):

─ A = 1011 (=  ─ 5) 

OR

• Invert all bits in A and add 1:
─ A = A + 1 =  1010 + 1  = 1011  (=  ─ 5)



1. MSB still indicates sign

2. Addition does work

3. Only one representation of zero:
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Convenience of Two’s Complement

0  0  0  0

1  0 1  1       – 510

+ 0  0  1  0       + 210

1  1  0  1       −310 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖!)

1  0 1  1       – 510

+ 0  1  1  1       + 710

1 0  0 1 0       +210 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖!)

note: throw away 
the “overflow” bit



Unsigned Number Wheel
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0000
0001

0010

0011

0100

0101

0110
01111000

1001

1010

1011

1100

1101

1110
1111

0
1

2

3

4

5

6
78

9

10

12

11

13

14
15

Discontinuity at limits of 
numerical representation 
(0 and 15)



Sign-Magnitude Number Wheel
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0000
0001

0010

0011

0100

0101

0110
01111000

1001

1010

1011

1100

1101

1110
1111

+0
1

2

3

4

5

6
7– 0

– 1

– 2

– 4

– 3

– 5

– 6
–7

Two discontinuities:
at transitions around zero



Twos Complement Number Wheel
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0000
0001

0010

0011

0100

0101

0110
01111000

1001

1010

1011

1100

1101

1110
1111

+0
1

2

3

4

5

6
7– 8

– 7

– 6

– 4

– 5

– 3

– 2
–1

Discontinuity at limits of 
numerical representation 
( ─ 8 and +7)



Positive and Negative Hexadecimal Numbers

• If A is a 4-digit unsigned hexadecimal number
– What is the smallest value (in hex) that A can be and what is its 

decimal equivalent ?
– What is the largest value (in hex) that A can be and what is its 

decimal equivalent ?

• If B is a 4-digit signed hexadecimal number
– What is the smallest value (in hex) that B can be and what is its 

decimal equivalent ?
– What is the largest value (in hex) that B can be and what is its 

decimal equivalent ?
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Busses

• Frequently useful to group a  number of signals into a 
group as a bus:

– e.g. A is a 16-bit bus:

– represented as

or 

• Bus may carry a binary value (with a LSB and a MSB)

• Or just a collection of non-numerically related bits
– e.g. binary instruction 41

A0
A1
A2

A15

•
•
•

16

16



Registers

• When we want to “remember” an N-bit value…
– may be numerical value, instruction, code, address etc.

• We often group N D-flip-flops together to capture and 
store the value on the rising edge of a common clock

• We call this an N-bit register
– e.g. 16-bit register

42

16

16-bit 
register

D Q

clk

A(0-15) 16 Z (0-15)
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