
CPE 390: Microprocessor Systems
Spring 2018

Lecture 2
Digital Logic Basics

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Digital Abstraction

• Most physical variables are continuous
– voltage on a wire
– frequency of an oscillation
– position of a mass

• Computation on continuous variables subject to noise and
distortion
• any computation will have finite error
• errors will accumulate

• Digital abstraction considers discrete subset of values
• output can be “restored” to correct value
• error free (with very high probability)

2

Digital Discipline: Binary Values

• Early computing engines used multi-value digital variables
– Babbage engine used gears with 10 different positions
– Simplified base10 arithmetic

• Very difficult to build electronic circuits that restore to
multiple (>2) discrete values

• Very easy to build circuits that restore to two values
• Use two discrete (binary) values: 0 and 1

3

Transfer function of a
simple CMOS inverter:

input

output

Application of Binary Values

• Binary signals can be used to represent logical values:
– 0 = FALSE 1 = TRUE

• Binary signals can be used to represent numerical values:
– using base2 representation
– each binary signal represents one binary digit (bit)

• Binary signals can be used to represent any other variable
that can only take on one of two different values
– e.g. black/white, on/off, up/down

• In digital electronic circuits:
– 0 is usually low voltage (ground, VSS, 0 volts)
– 1 is usually high voltage (power supply, VDD, 3.3 volts)

• Beauty of (binary) digital abstraction is that the designer does
not need to know the (physical) implementation details
– can just focus on 0’s and 1’s

4

Formal (Philosopher’s) Logic

A: All dogs are warm blooded
B: Molly is a dog
C: Molly is warm blooded

If (A is true) and if (B is true), then (C is true)

What if B is not true. Does that make C false?
e.g. What if Molly is a cat?

Formal logic does not address cases not explicitly
covered in the logic statement

5

A B C
T T T
T F ?
F T ?
F F ?

Digital (Boolean) Logic

In digital logic, there is always an implied
else clause

If (A is true) and if (B is true),
then (C is true);

A: If you have come to a complete stop
B: There is no traffic coming
C: You may proceed

If (A is false) or if (B is false),
then (C is false); else (C is true)

In digital logic, usually use ‘1’ for true, ‘0’ for
false

6

A B C
T T T
T F F
F T F
F F F

A B C
1 1 1
1 0 0
0 1 0
0 0 0

else (C is false)

AND gate

When more than two inputs, the output equals ‘1’ only
when all inputs are equal to ‘1’

7

A B C

0 0 0

0 1 0

1 0 0

1 1 1

A
B

C

logic symbol

Boolean equation

C = A*B
or C = A.B

truth table

OR gate

When more than two inputs, the output equals ‘1’
when any input is equal to ‘1’

8

A B C

0 0 0

0 1 1

1 0 1

1 1 1

A
B

C

logic symbol

Boolean equation

C = A+B

truth table

Inverter or NOT gate

9

A Z

0 1

1 0

A Z

logic symbol

Boolean equation

truth table

Z = A
or Z = A'

NAND gate

When more than two inputs, the
output equals ‘0’ only when all
inputs are equal to ‘1’

10

A B C

0 0 1

0 1 1

1 0 1

1 1 0

A
B

C

logic symbol

Boolean equation

C = A*B

or C = A.B

truth table

equivalent to:

A
B

C

NOR gate

When more than two inputs, the
output equals ‘0’ when any input is
equal to ‘1’

11

A B C

0 0 1

0 1 0

1 0 0

1 1 0

A

B
C

logic symbol

Boolean equation truth table

equivalent to:

A
B

C

C = A+B

D = A⊕B

XOR and XNOR gate

When more than two inputs, the output
of XOR equals ‘1’ only when an odd
number of inputs are equal to ‘1’

12

A B C D

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

A
B

C

XOR symbol

C = A⊕B

XOR/XNOR truth table

XNOR symbol

A
B

D

Creating More Complex Logic Functions

13

A
B
C

D

E
F

Z

Z=[(A.B.C) + D] + [D.(E+F)]

Some Useful Formulae

14

A + ‘0’ =

A + ‘1’ =

A + A =

A + A =

A • ‘0’ =

A •‘1’ =

A • A =

A • A =

A ⊕ ‘0’ =

A ⊕ ‘1’ =

A ⊕ A =

A ⊕ A =

A ⊕ B = (A • B) + (A • B)

A ⊕ B = (A • B) + (A • B)

Some Useful Formulae

15

A + ‘0’ = A

A + ‘1’ = ‘1’

A + A = A

A + A = ‘1’

A • ‘0’ = ‘0’

A •‘1’ = A

A • A = A

A • A = ‘0’

A ⊕ ‘0’ = A

A ⊕ ‘1’ = A

A ⊕ A = ‘0’

A ⊕ A = ‘1’

A ⊕ B = (A • B) + (A • B)

A ⊕ B = (A • B) + (A • B)

16

• Z = S.A + S.B

Multiplexer

A

B

S
Z

S A B Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

S A B Z

0 0 - 0

0 1 - 1

1 - 0 0

1 - 1 1

S Z

0 A

1 B

A

B

0

1

S

Z

17

4-input Multiplexer

S1 S0 Z

0 0 I0
0 1 I1
1 0 I2
1 1 I3

• Z = S0.S1.I0 + S0.S1.I1 + S0.S1.I2 + S0.S1.I3

• Typically, an 2N-way multiplexor will use N select signals
to choose between one of 2N inputs

I0 00

S1

Z
01

10

11

S0

I1
I2
I3

18

Combinational vs. Sequential Logic

• A combinational circuit (logic) is one in which the output
depends only on the current value of the inputs
– All of the logic gates we have described so far (AND, NOR,

XOR, multiplexer etc.) are combinational
– If you know the inputs you know the outputs

• A sequential circuit (logic) is one in which the output
depends on the current value and previous values of the
inputs
– Output depends on the sequence of applied inputs
– Sequential circuits include some form of memory of previous

inputs that modify output values
– We often call these remembered values the state of the circuit or

system.
– All sequential circuits include some form of feedback loop to feed

the remembered state back into the inputs of the circuit.

19

Memory – the cross coupled inverter

• Almost all form of digital memory are built around the
idea of having two inverters (NOT gates) connected in a
feedback loop.

• Positive feedback drives circuit into one of two stable
states

• Either: (Y=1, Z=0) OR (Y=0, Z=1)
– Circuit will hold state indefinitely

• How do we change the state?

Z

Y

RS Latch

2020

• Simple “writable” storage element

• Normally, Sb and Rb are both 1

• When Sb=0, Q is set to 1
• When Rb=0, Q is reset to 0

Sb

Rb

Q Rb Sb Q
0 1 0

1 0 1

1 1 no change

0 0 illegal

D Latch

21

• When Gate = 1, latch is transparent
• D flows through to Q like a buffer
• When gate = 0, the latch is opaque
• Q holds its old value independent of D
• a.k.a. transparent latch or level-sensitive latch

D
Latch

D

Gate

Q

D Gate Q
0 1 0

1 1 1

0 0 no change

1 0 no change

D

CLK

Q

Gate

D Flip-flop

22

• When CLK rises, D is copied to Q
• At all other times, Q holds its value
• a.k.a. edge-triggered flip-flop, master-slave flip-flop

clk D Q

0 X no change

1 X no change

↑ 1 1

↑ 0 0

D
flip-flop

D Q

clk

D

CLK

Q

23

Number Systems

Decimal (base10)

𝐴𝐴 = �
𝑖𝑖=0

𝑛𝑛−1

𝑎𝑎𝑖𝑖. 10𝑖𝑖

1 0 0 1 1 1 0 1
27 26 25 24 23 22 21 20

=128+ 0+ 0 +16 +8 + 4 + 0 + 1 =15710

𝐴𝐴 = �
𝑖𝑖=0

𝑛𝑛−1

𝑎𝑎𝑖𝑖. 2𝑖𝑖

Binary (base2)

1 5 7
102 101 100

= (1x100)+(5x10)+(7x1)

24

Powers of 2

• 20 = 1
• 21 = 2
• 22 = 4
• 23 = 8
• 24 = 16
• 25 = 32
• 26 = 64
• 27 = 128
• 28 = 256

• 29 = 512
• 210 = 1024
• 211 = 2048
• 212 = 4096
• 213 = 8192
• 214 = 16384
• 215 = 32768
• 216 = 65536
• handy to memorize up to 210

25

Range of Binary Numbers

• N-digit decimal number
– How many values?
– Range?
– Example: 3-digit decimal number:

• N-bit binary number
– How many values?
– Range:
– Example: 3-bit binary number:

26

Hexadecimal Numbers

• For humans, its clumsy to always work in binary
– just too many bits!

• Divide a binary number into 4-bit groupings and represent
each 4-bits by a single hexadecimal (base16) digit.

• But, in hexadecimal, each digit can have a value of 0 – 1510 !!
• We need new symbols to represent the values 1010 – 1510

• Use symbols A, B, C, D, E and F

Binary: 0010 1001 0101 0111

Hex: 2 9 5 7

Hexadecimal Numbers

• For example:

4AF16 =

0100 1010 11112

= (4 x 256)
+ (10 X 16)
+ (15 x 1)

= 119910

27

28

Bits, Bytes and Nibbles…

• Bits:
(8-bit binary)

• Bytes & Nibbles:
(8-bit binary)

• Bytes:
(32-bit hex)

1 0 0 1 0 1 1 0
most

significant
bit (MSB)

least
significant
bit (LSB)

1 0 0 1 0 1 1 0
byte (8 bits)

nibble
(4 bits)

3 A C F 2 4 D 7

MSbyte LSbyte

29

Addition

• Decimal:

• Binary:

• Hex:

3 7 3 4
+ 5 1 6 8

1 0 1 1
+ 0 0 1 1

1 A 3 7
+ 0 9 F 6

30

Overflow

• Note that if we add two n-bit numbers, we will (in general) get
an (n+1) bit result:

1 0 1 0
+ 0 1 1 1

1 0 0 0 1

1 1 1 carries

overflow

How do we deal with negative numbers?

Two common approaches:

• Sign-magnitude representation

• Two’s complement representation

Signed Binary Representation

• One sign bit plus n-1 magnitude bits
• MSBit is the sign bit:

– MSB=0 means positive number
– MSB=1 means negative number

• for example, for n=8:

• n-bit sign-magnitude number can take on values
–(2n-1-1) to (2n-1-1)

32

Sign-Magnitude Representation

𝐴𝐴 = −1 𝑎𝑎𝑛𝑛−1 × �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖. 2𝑖𝑖

0 0 0 1 0 1 1 1
= +1 x (0 + 0 +16 +0 + 4 + 2 + 1) = 23

1 0 0 1 0 1 1 1
= –1 x (0 + 0 +16 +0 + 4 + 2 + 1) = – 23

1. Addition doesn’t work
– for example, 4-bit addition of −5 𝑎𝑎𝑎𝑎𝑎𝑎 (+2)

2. Two representations of zero (±0):

33

Problems with Sign-Magnitude

1 1 0 1
+ 0 0 1 0

1 1 1 1 = −710 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

0 0 0 0

1 0 0 0

• MSBit has value (−2𝑛𝑛−1) :

• for example, n=8:

• n-bit two’s complement number can take on values
(-2n-1) to (2n-1-1) 34

Two’s Complement Representation

1 1 1 0 1 0 0 1

27 26 25 24 23 22 21 20

= -128 +64+32 +0 +8 + 0 + 0 + 1 = – 23

𝐴𝐴 = − 𝑎𝑎𝑛𝑛−1. 2𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖. 2𝑖𝑖

0 0 0 1 0 1 1 1
= 0 + 0 + 0 +16 +0 + 4 + 2 + 1 = 23

35

Two’s Complement

• To form two’s complement (i.e. flip the sign) of number A,
either

• Working from LSB to MSB, complement (invert) all bits
after (to the left of) first ‘1’:
– e.g. A = 0101 (= 5)
complementing all bits to left of first ‘1’ (occurs at bit 0):

─ A = 1011 (= ─ 5)

OR

• Invert all bits in A and add 1:
─ A = A + 1 = 1010 + 1 = 1011 (= ─ 5)

1. MSB still indicates sign

2. Addition does work

3. Only one representation of zero:

36

Convenience of Two’s Complement

0 0 0 0

1 0 1 1 – 510

+ 0 0 1 0 + 210

1 1 0 1 −310 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐!)

1 0 1 1 – 510

+ 0 1 1 1 + 710

1 0 0 1 0 +210 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐!)

note: throw away
the “overflow” bit

Unsigned Number Wheel

37

0000
0001

0010

0011

0100

0101

0110
01111000

1001

1010

1011

1100

1101

1110
1111

0
1

2

3

4

5

6
78

9

10

12

11

13

14
15

Discontinuity at limits of
numerical representation
(0 and 15)

Sign-Magnitude Number Wheel

38

0000
0001

0010

0011

0100

0101

0110
01111000

1001

1010

1011

1100

1101

1110
1111

+0
1

2

3

4

5

6
7– 0

– 1

– 2

– 4

– 3

– 5

– 6
–7

Two discontinuities:
at transitions around zero

Twos Complement Number Wheel

39

0000
0001

0010

0011

0100

0101

0110
01111000

1001

1010

1011

1100

1101

1110
1111

+0
1

2

3

4

5

6
7– 8

– 7

– 6

– 4

– 5

– 3

– 2
–1

Discontinuity at limits of
numerical representation
(─ 8 and +7)

Positive and Negative Hexadecimal Numbers

• If A is a 4-digit unsigned hexadecimal number
– What is the smallest value (in hex) that A can be and what is its

decimal equivalent ?
– What is the largest value (in hex) that A can be and what is its

decimal equivalent ?

• If B is a 4-digit signed hexadecimal number
– What is the smallest value (in hex) that B can be and what is its

decimal equivalent ?
– What is the largest value (in hex) that B can be and what is its

decimal equivalent ?

40

Busses

• Frequently useful to group a number of signals into a
group as a bus:

– e.g. A is a 16-bit bus:

– represented as

or

• Bus may carry a binary value (with a LSB and a MSB)

• Or just a collection of non-numerically related bits
– e.g. binary instruction 41

A0
A1
A2

A15

•
•
•

16

16

Registers

• When we want to “remember” an N-bit value…
– may be numerical value, instruction, code, address etc.

• We often group N D-flip-flops together to capture and
store the value on the rising edge of a common clock

• We call this an N-bit register
– e.g. 16-bit register

42

16

16-bit
register

D Q

clk

A(0-15) 16 Z (0-15)

	CPE 390: Microprocessor Systems�Spring 2018
	Digital Abstraction
	Digital Discipline: Binary Values
	Application of Binary Values
	Formal (Philosopher’s) Logic
	Digital (Boolean) Logic
	AND gate
	OR gate
	Inverter or NOT gate
	NAND gate
	NOR gate
	XOR and XNOR gate
	Creating More Complex Logic Functions
	Some Useful Formulae
	Some Useful Formulae
	Multiplexer
	4-input Multiplexer
	Combinational vs. Sequential Logic
	Memory – the cross coupled inverter
	RS Latch
	D Latch
	D Flip-flop
	Number Systems
	Powers of 2
	Range of Binary Numbers
	Hexadecimal Numbers
	Hexadecimal Numbers
	Bits, Bytes and Nibbles…
	Addition
	Overflow
	Signed Binary Representation
	Sign-Magnitude Representation
	Problems with Sign-Magnitude
	Two’s Complement Representation
	Two’s Complement
	Convenience of Two’s Complement
	Unsigned Number Wheel
	Sign-Magnitude Number Wheel
	Twos Complement Number Wheel
	Positive and Negative Hexadecimal Numbers
	Busses
	Registers

