
CPE 390: Microprocessor Systems
Spring 2018

Lecture 3
Elements of a Microcomputer System

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Stored Program Digital Computer

• Program is stored in memory as a sequence
of machine code instructions
– each machine code instruction occupies one or

more memory locations
– each machine code instruction consists of a pattern

of ‘1’s and ‘0’s which determine operation to be
performed by the CPU

– mapping of machine code instructions to CPU
operations is sometimes called instruction set
architecture 2

Control
Unit

Registers

Arithmetic
logic unit
(ALU)

Datapath

Central Processing Unit
(CPU)

Common Bus (address, data & control)

Memory

Program
and Data

Input
Output
Data

CPU Control Unit

• Contains special register known
as program counter
– contains memory address of next

instruction to be executed

• Control unit fetches from
memory the machine code
instruction whose address is
given by the program counter

• Control unit decodes the
instruction

• Control unit executes the
instruction

3

Program
Counter

address to
memory

instruction
from

memory
Instruction
Decoder

control signals
to data path

Control Unit

Instruction Execution

• Control unit executes the instruction
including:
– fetching required data operands from

registers and/or memory
– controlling ALU to perform any required

data operation
– storing any results in registers and/or

memory
– updating program counter to point to

address of next instruction to be executed

4

• Program instructions are normally stored in sequential
locations in memory

• Control unit recognizes (conditional) branch instructions
which alter the normal program flow

CPU Datapath - Registers

• Temporary storage location inside CPU
• Hold data or address of data to be processed
• Provide operands to ALU and receive results

from ALU
• number of registers can range from:

– 1 (simple microcontroller with accumulator) to
– over 100 (128 in Intel Itanium)

5

• General purpose vs. special purpose registers
• Status (condition code) register holds bits (flags) that reflect

result of last ALU operation (e.g. carry, zero, sign)
– used by control unit in branching operations

• Faster access than memory (fewer clock cycles)
• Simpler instruction format (limited address range)

Registers

Arithmetic
logic unit
(ALU)

Datapath

Status

CPU Datapath – Arithmetic & Logic Unit (ALU)

• Performs simple arithmetic and logic
operations on data stored in registers and/or
memory

• Add, subtract, and, or, shift, increment,
multiply, etc.

• Operation depends on current machine code
instruction

6

Registers

Arithmetic
logic unit
(ALU)

Datapath

Status

• Simple operations (register to register add) may execute in
one clock cycle

• May include special purpose complex operations
– e.g. square-root, floating point, divide, complex number arithmetic
– typically take multiple clock cycles

• Results stored in registers and/or memory
• Status register updated according to result

Basic Instruction Cycle

7

Control
Unit

Registers

Arithmetic
logic unit
(ALU)

Datapath

CPU

(address, data & control)

Memory
(Program
& Data)

I/O

Decode

Fetch

Execute

machine
code

instruction

microcode
control bits

next
instruction
address

(PC)

PC

Basic Instruction Cycle

• Fetch:
– Read machine code instruction from

memory at address supplied by
program counter (PC)

– May take multiple memory cycles if
instruction occupies more than one
memory location

• Decode:

8

Fetch

DecodeExecute

– Determine operations to be performed and generate microcode bits
to control CPU hardware

• Execute:
– Fetch required operands from memory and/or registers
– Perform required ALU operations
– Store results in registers and/or memory
– Update PC

Operations Performed by Instructions

• Range of operations performed by individual instructions
varies according to instruction set architecture and is
different for each microprocessor family

• Microprocessor instructions typically:
– move data between registers and memory
– perform arithmetic and logic operations on data stored in registers

and/or memory
– update PC to implement branching (conditional and unconditional)
– input data from and output data to external peripherals
– set internal registers in CPU to control operation of specific

functionality (e.g. interrupts, timers, I/O)

9

Instruction Examples (HCS12)

• Memory is byte addressed
– each memory location contains 8-bits of data

• One-byte instruction:

• Two-byte instruction:

10

0 1 0 1 0 0 0 1address n: complement all bits in
accumulator (register) B

1 0 0 1 1 0 1 1address n:
add contents of memory
location whose address is in
next instruction byte to
accumulator (register) A

0 0 0 0 0 0 1 1address n+1: data is in memory address 3

i.e., add contents of memory address 3 to accumulator A

Program Execution Example

11

Address Bus (8)Control
Unit

Arithmetic
logic unit

Datapath

Central Processing Unit
(CPU)

Memory
(256 x 8-bits)

Program
and Data

Data Bus (8)

PC

A
P

Z

– 8-bit memory address and
8-bit data bus

• up to 256 x 8-bit words of
memory

– CPU has 8-bit ALU and 3
registers:

• 8-bit program counter (PC)
• 8-bit accumulator (A)
• 8-bit pointer register (P)
• 1-bit zero flag to indicate

last arithmetic result was
zero

• Suppose we have very simple processor:

Simple Processor Instruction Set

• Suppose our simple processor
understands only 7 different
instructions:

12

Instruction Hexadecimal
Machine Code Meaning

lda #val 27 xx Load 8-bit value into A
ldp #val E7 xx Load 8-bit value into P
sta addr 91 aa Store A into memory location at addr.
adda @ptr 3B Add data in mem. loc. pointed to by P to A
incp 62 Increment P
decm addr 1C aa Decrement contents of mem. loc. at addr.
bnz offset 55 zz If last result was not zero, add (signed) offset to PC

Sample Program (Example)

• Use simple processor to add contents of memory
locations 20-23 (hex) and store result in location 24 (hex)

13

lda #4 ; load A with number 4
sta 0x30 ; and store in mem. loc. 30 (hex) as counter
ldp #0x20 ; set P to point at mem. loc. 20 (hex)
lda #0 ; load A with zero

loop: adda @ptr ; add data pointed to by P to acc. A
incp ; increment data pointer
decm 0x30 ; decrement counter
bnz loop ; if not done, go to loop
sta 0x24 ; store result in mem. loc. 24 (hex)

Machine Code (Example)

14

Assembly Address Machine
Code

lda #4 0x00 27 04
sta 0x30 0x02 91 30
ldp #0x20 0x04 E7 20
lda #0 0x06 27 00

loop: adda @ptr 0x08 3B
incp 0x09 62
decm 0x30 0x0A 1C 30
bnz loop 0x0C 55 FA
sta 0x24 0x0E 91 24

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 xx

ADDR:

Machine Code loaded into Memory:

Suppose locations 20-23
preloaded with 13, 2A, 04 and 3E:

Initialization (Example)

1. Push reset button to begin
program execution at 00

2. PC is loaded with 00
3. Other registers are not

defined – filled with random
junk

4. Begin program execution

15

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 xx

ADDR: PC=00

P=xx

A=xx

Z=x

Instruction 1 (Example)

1. Fetch instruction from [00]
2. Decode instruction
3. Fetch data from [01]
4. Store data in A
5. Set Z flag according to data
6. Set PC to [02]

16

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 xx

ADDR:

lda #4
PC=00

P=xx

A=04

Z=0

Instruction 2 (Example)

1. Fetch instruction from [02]
2. Decode instruction
3. Fetch address from [03]
4. Store [A] in mem. addr. 30
5. Set Z flag according to data
6. Set PC to [04]

17

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 04

ADDR:

sta 0x30 PC=02

P=xx

A=04

Z=0

Instruction 3 (Example)

1. Fetch instruction from [04]
2. Decode instruction
3. Fetch data from [05]
4. Store data in P
5. Set Z flag according to data
6. Set PC to [06]

18

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 04

ADDR:

ldp #0x20
PC=04

P=20

A=04

Z=0

Instruction 4 (Example)

1. Fetch instruction from [06]
2. Decode instruction
3. Fetch data from [07]
4. Store data in A
5. Set Z flag according to data
6. Set PC to [08]

19

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 04

ADDR:

lda #0

PC=06

P=20

A=00

Z=1

Instruction 5 (Example)

1. Fetch instruction from [08]
2. Decode instruction
3. Fetch data from mem pointed to by P
4. Add data to [A] and store back in A
5. Set Z flag according to data
6. Set PC to [09]

20

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 04

ADDR:

adda @ptr

PC=08

P=20

A=13

Z=0

Instruction 6 (Example)

1. Fetch instruction from [09]
2. Decode instruction
3. Increment pointer P
4. Set Z flag according to data
5. Set PC to [0A]

21

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 04

ADDR:

incp

PC=09

P=21

A=13

Z=0

Instruction 8 (Example)

1. Fetch instruction from [0A]
2. Decode instruction
3. Fetch address from [0B]
4. Read data from [addr]
5. Decrement data
6. Store data back in addr.
7. Set Z flag according to result
8. Set PC to [0C]

22

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 03

ADDR:

decm 0x30

PC=0A

P=21

A=13

Z=0

Instruction 8 (Example)

1. Fetch instruction from [0C]
2. Decode instruction
3. Fetch offset from [0D] (= –6)
4. Set PC to [0E]
5. Test Z flag
6. If Z=0, add offset to PC

23

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 03

ADDR:

bnz loop

PC=0C

P=21

A=13

Z=0

FA (-6)

Instruction 9 (Example)

1. Fetch instruction from [08]
2. Decode instruction
3. Fetch data from mem pointed to by P
4. Add data to [A] and store back in A
5. Set Z flag according to data
6. Set PC to [09]

24

00 27
01 04
02 91
03 30
04 E7
05 20
06 27
07 00
08 3B
09 62
0A 1C
0B 30
0C 55
0D FA
0E 91
0F 24

20 13
21 2A
22 04
23 3E
24 xx

30 03

ADDR:

adda @ptr

PC=08

P=21

A=3D

Z=0

etc…etc…

RISC vs. CISC

• CISC (Complex Instruction Set Computers) support complex
instructions that may take many clock cycles to complete:
– complex instruction format (specific bit positions mean different

things in different instructions)
– rich set of addressing modes
– many special purpose registers
– examples include x86, M68000, Pentium, VAX, HCS12

• RISC (Reduced Instruction Set Computers) used simplified
instruction set that reduces cycles/instruction and allows
increased clock rate.
– uniform instruction format (faster decoding)
– load/store architecture with simple addressing modes
– many general purpose registers
– more instructions per task
– simpler to pipeline; simpler to write compiler
– examples include ARM, SPARC, MIPS 25

Memory

• Memory is typically a 1-D array of directly addressable locations
• Each location has two components: address and contents
• Each memory loc. can store data, instruction, address, status etc.
• Read (or load) operation transfers data from memory to CPU
• Write (or store) operation transfers data from CPU to memory
• # bits in address field determine memory address space

– 16 bits allows for 65,636 (64K) distinct memory locations
– 32 bits allows for 4,294,967,296 (4G) distinct memory locations

• Actual (physical) memory space is usually smaller than memory
address space 26

CPU Memory
System

address

data

R/W

Memory Bus

• Microprocessors typically use one or more buses to
communicate with memory and peripherals (I/O)

• Bus is a set of lines (e.g. 16-bit bus) that can be shared by
several devices
– Only one device “writes” (or outputs) data on to bus at any one time –

one of more devices can “read” (or input) data that has been written.
• Three buses on HCS12 (control, address and data)

27

CPU Memory I/O

Address Bus

Data Bus

Control Bus

Clock(s)
& Power

Memory Technologies

• Magnetic Memory
– earliest form of computer memory
– magnetic drums, tapes, disks, core memory
– only magnetic disks in widespread use today
– non-volatile (retains information when power removed)
– challenged by flash

• Optical memory
– Compact Disk (CD) - 700 MB of data
– Digital Video Disk (DVD) - 4.7 GB of data
– Blu-Ray Disk (BD) – 25 GB of data
– non-volatile – longer term storage and archive

• Magnetic and Optical memory are not random-access
– highest data rate when data is read sequentially
– random access requires relatively long seek time
– not suitable for main memory of computer system 28

Semiconductor Memory

• Most semiconductor memories are random-access
– uniform (fast) time to read or write to arbitrary address
– well suited to main memory of computer system

• Volatile semiconductor memory
– loses information when power is removed
– Dynamic Random Access Memory (DRAM)

• data stored as charge on capacitor
• each one-bit cell consists of 1 transistor and 1 capacitor
• highest density
• read operation is destructive – data must be re-written
• charge leaks away over time – must be periodically refreshed

– Static Random Access Memory (SRAM)
• data stored in cross-coupled inverter
• 4-6 transistors per cell
• fastest access times
• no refresh required 29

Read-Only Memory

• Why would you want a memory that can only be read?
• Because ROM is usually non-volatile

– ideal for holding programs and data that must be available each time power
is applied (e.g., boot code, embedded system firmware)

– some ROM technologies can be erased & rewritten (takes long time)

• Mask Programmed ROM (MROM)
– programmed at time of manufacture
– only cost effective in very large quantities

• Programmable ROM (PROM)
– programmed by user once by blowing fuses (or anti-fuses)
– requires special programming equipment

• Erasable Programmable ROM (EPROM)
– Erased by UV light and reprogrammed electrically many times

• Electrically Erasable Programmable PROM (EEPROM)
– electrically erased and reprogrammed many times
– can be erased one location, one row or whole chip in one operation 30

Flash Memory

• Relatively new technology
– NOR 1984, NAND 1987

• Non volatile – uses trapped charge in floating gate transistor
• Density and speed comparable to hard disk
• Random access read
• Block erase followed by random access write
• Intelligent controllers provide an interface that mimics RAM

of hard disk controller
• Ideal for storing slowly changing user data that must survive

power outage

31

Computer Software

• Computer programs are frequently called software
• Software can be written at different levels of abstraction:
• Machine Code Instructions

– lowest level: sequence of bits that are stored in memory
– directly executed by CPU according to instruction set architecture

• Assembly Language (Assembly Code)
– mnemonic representation of machine instructions
– usually one-to-one correspondence
– must be translated by an assembler into machine code for execution

– for example: 32

1 0 0 1 1 0 1 1

0 0 0 0 0 0 1 1

address n:

address n+1:

which when executed adds
contents of memory address 3
to accumulator A

ADDA $03

High Level Language

• Programming in assembler (assembly language) requires
programmer to understand in detail the instruction set
architecture of the microprocessor

• Provides maximum control of resources
– fastest, most compact code

• Very time consuming with long write/execute/debug cycle
• High level languages (e.g. C) allow programmer to work at

more abstract level (variables, data structure & operators)
• Programmer does not need to understand details of

instruction set architecture
• Compiler (which does understand ISA) converts high level

source code to assembly or machine code
• In high level programming environment, output of compiler is

often referred to as object code 33

	CPE 390: Microprocessor Systems�Spring 2018
	Stored Program Digital Computer���
	CPU Control Unit���
	Instruction Execution���
	CPU Datapath - Registers���
	CPU Datapath – Arithmetic & Logic Unit (ALU)���
	Basic Instruction Cycle���
	Basic Instruction Cycle���
	Operations Performed by Instructions���
	Instruction Examples (HCS12)���
	Program Execution Example
	Simple Processor Instruction Set���
	Sample Program (Example)���
	Machine Code (Example)���
	Initialization (Example)���
	Instruction 1 (Example)���
	Instruction 2 (Example)���
	Instruction 3 (Example)���
	Instruction 4 (Example)���
	Instruction 5 (Example)���
	Instruction 6 (Example)���
	Instruction 8 (Example)���
	Instruction 8 (Example)���
	Instruction 9 (Example)���
	RISC vs. CISC���
	Memory���
	Memory Bus���
	Memory Technologies���
	Semiconductor Memory���
	Read-Only Memory���
	Flash Memory���
	Computer Software���
	High Level Language���

