
CPE 390: Microprocessor Systems
Spring 2018

Lecture 4
Introduction to HCS12

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

HCS12 Microcontroller

• Freescale HCS12 is an 8/16 bit microcontroller
• Targeted at automotive and process control apps.
• Features:

– 16-bit address and data buses
– 8 and 16-bit arithmetic instructions
– 64kB memory space
– Up to 4kB EEPROM
– Up to 14kB on-chip SRAM
– Up to 512kB on-chip flash
– Sophisticated timer functions
– Serial communication interfaces (SCI, SPI, I2C, CAN, BDLC)
– Background debug
– 10-bit A/D converter
– Instructions for supporting fuzzy logic operations

2

HCS12

HCS12 Microcontroller

3

Address Bus (16)Control
Unit

8/16-bit
ALU

Datapath

Central Processing Unit
(CPU)

RAM
up to

14K x 8-bits
Program
and Data

Data Bus (16)

PC

A
D

B

X

Y

SP
CCR

EEPROM
up to

4K x 8-bits
Program
and Data

I/O

Timer

Serial I/O

A/D

General
Purpose

Ports

CPU Registers

4

7 0A 7 0B
15 0D

8-bit accumulator A and B
or
16-bit double accumulator D

15 0X 16-bit index register X

15 0Y 16-bit index register Y

15 0SP 16-bit stack pointer

15 0PC 16-bit program counter

S X H I N Z V C 8-bit condition code register
Carry
Overflow
Zero
Negative
Interrupt mask
Half-carry (from bit 3)
X interrupt mask
Stop disable

More on Registers

• General purpose accumulators A and B
– A and B are 8-bit (byte) registers
– Most arithmetic performed on these two registers
– Some instructions see these as a single 16-bit accumulator D

• Index registers X and Y
– 16-bit registers used mainly for forming operand addresses
– Also used in several arithmetic operations

• Stack pointer (SP)
– Stack is last-in first out data structure in memory used to facilitate

parameter passing and local variable storage in subroutine calls
– Stack grows from higher to lower addresses
– 16-bit SP points to the top (lowest address) of stack

• Program Counter
– 16-bit PC holds address of next instruction to be executed
– After instruction is executed, PC is incremented by number of bytes

of executed instruction
5

Number Bases

• In development tool environment (e.g. when writing
assembler code), not convenient to represent numbers in
binary format

• Use a combination of binary, decimal, octal and
hexadecimal notation:

• Following 16-bit addresses are all equivalent
– %0010111101011010
– @027532
– 12122
– $2F5A

6

Base Prefix Example
Binary % %10001010
Octal @ @135572

Decimal 8192
Hexadecimal $ $3A7F

• HCS12 memory is byte addressable
• 16-bit address & data buses
• memory address is always 16-bit
• data read or written may be 8-bit or

16-bit depending on instruction
• 16-bit data is stored in two

successive memory locations
– MSbyte in lower address
– LSbyte in upper address

Memory Addressing

7

CPU Memory

address bus

data bus

$2000

$80

$A3
$80

low addr

high addr

$0000
$0001

$2000
$2001

$FFFE
$FFFF

8-bit

[$2000] = $80
[$2001] = $A3
[$2000]:[$2001] = $80A3

memory address

[] denotes contents of

• A HCS12 instruction can occupy one to seven bytes of
memory

• Each instruction consists of one or two bytes of opcode
followed by zero to five bytes of operand addressing
information

• Opcode tells CPU control unit
– what operation is to be performed
– determines how many bytes must be fetched to get complete

instruction
– most opcodes are one-byte
– first byte of a two-byte opcode is always $18

• Operand address information used to determine memory
address of all operands required to complete instruction
execution

Instruction Format

8

• To move a 16-bit word from memory location $1000:$1001
to memory location $1223:$1224 …

Instruction Example

9

movw $1000, $1223

opcode operand
address

1

operand
address

2

$10
$00

$4000
$04
$18

$12
$23

$4001
$4002
$4003
$4004
$4005

opcode

operand
addr. 1

operand
addr. 2

Machine code instruction stored
at memory address $4000

• Operand memory addresses need to be specified in a
variety of different ways to facilitate writing efficient,
compact, flexible code

• For example:
– is the address of a piece of data in a fixed (at time of writing code)

location or does its location depend on program execution?
– is the value of a piece of data constant throughout the execution of

the program or does it change?
– do you want to branch to an absolute (fixed) memory address or to

an address that is relative to the current value of the PC?
– does the memory location you are accessing contain the data you

require or the address of the data you require?
– can the memory address of your data be specified using one byte

or does it require a two-byte address?
• HCS12 supports a number of different operand addressing

modes to support both assembly and compiled code

Operand Addressing

10

HCS12 supports following operand addressing modes:

• Immediate
• Extended
• Indexed

– constant offset
– accumulator offset
– auto pre/post increment/decrement
– indirect with constant offset
– indirect with accumulator offset

Addressing Modes

11

Addressing: Immediate Mode

• Operand is included as part of instruction
– does not require any operand fetch cycles during instr. execution
– immediate value is preceded by # character
– immediate value can by 8 or 16-bit depending on context

• Examples:

ldaa #55 ; places 8-bit decimal value 55 in A accum.

ldx #$2000 ; places 16-bit hex value $2000 in X register

movw #$10,$100 ; m[$100]  $00; m[$101]  $10
; stores hex values $00 and $10 in memory
; locations $100 and $101 respectively

(Analogous to C assignment statement: abc = 27;)
12

Addressing: Extended Mode

• Instead of instruction specifying the data, the instruction
specifies the memory address of where the data is located
– can access any location in full 64kB address space
– remember memory addresses are always interpreted as 16-bit
– but the data may be 8-bit or 16-bit depending on the context

• Examples:

ldaa $4000 ; A  [$4000]
; Fetches 8-bit contents of memory location
; $4000 and places data in accumulator A

ldx $20CA ; X  [$20CA]:[$20CB]
; Fetches 16-bit contents of memory locations
; $20CA and $20CB and places data in X

(Analogous to C assignment statement: abc = xyz;) 13

Addressing: Constant Offset Indexed Mode

• Operand address is specified as sum of an index register
(X, Y, PC or SP) and a fixed offset

• Offset can be signed 5-bit, 9-bit or 16-bit
• Assembler determines correct bit length depending on

constant supplied by programmer
• Examples:

ldx #$2000
ldy #$0600
ldaa 3,X ; A  [$2003] 5-bit offset
ldab -31,X ; B  [$2000 – 31] = [$1FE1] 9-bit offset
...
ldd $400,Y ; A  [$0A00]; B  [$0A01] 16-bit offset

(Analogous to C assignment statement: abc = g[3];)
14

Addressing: Accumulator Offset Indexed Mode

• Operand address is specified as sum of an index register
(X, Y, PC or SP) and a offset

• Instead of being a constant, offset is current value of A, B or
D accumulators

• Offsets in A and B are interpreted as unsigned

• Examples:
ldx #$3000
ldab #5
staa B,X ; m[$3005] = m[[B] + [X]]  A

ldy D,SP ; Y  [[D] +[SP]]:[1+ [D] + [SP]]

(Analogous to C assignment statement: abc = g[xyz];)
15

Addressing: Auto Inc/Dec Indexed Mode

• Base index register can by X, Y or SP
• No offset specified in this mode
• Index register is incremented or decremented by specified

of bytes either before or after operand access

• For example:

means…
1) load accumulator A with the contents of the memory location
whose address is specified in register X,
2) and then, increment the X register by 2

16

ldaa 2, X+

Addressing: Auto Inc/Dec Indexed Mode

• There are four version of this mode:

– Increment/Decrement amount is 1-8 bytes
– Allows stepping through data array in 1-8 byte increments

17

Syntax Effective
Address

New Value of
Base Register r Example Comment

n, -r [r] – n [r] – n ldd 2, -SP Pre-decrement
n, +r [r] + n [r] + n ldd 2, +SP Pre-increment
n, r- [r] [r] – n ldd 2, SP- Post-decrement
n, r+ [r] [r] + n ldd 2, SP+ Post-increment

n = amount of increment of decrement
r = base register (may be X, Y or SP)

Examples of Auto Inc/Dec Indexed Mode

ldx #$1000

staa 2,-X ; pre-decrement
; m[$0FFE]  A; new value of X is $0FFE

ldaa 4,+X ; pre-increment
: A  m[$1002]; new value of X is $1002

sty 2,X- ; post-decrement
; m[$1002]  YMSB; m[$1003]  YLSB

; new value of X is $1000
ldaa 4,X+ ; post-increment X

; A  m[$1000]; new value of X is $1004

(Analogous to C statements like : abc = ∗p++;)

18

Addressing: Constant Offset Indirect Mode

• Similar to 16-bit constant offset index mode except that the
memory location at the offset address contains the effective
address of the data, rather than the data itself
– The index register now holds the base address of a table of pointers
– Indirection is specified by use of [] brackets

• Index register can be X, Y, SP or PC
• Examples:

ldx #$1000
movw #$2000,$100A
movb #$A3,$2000
ldaa 10,X ; regular constant offset index mode

; A  [$1000+10] = [$100A] = $20
ldab [10,X] ; indirect constant offset index mode

; B  [[$1000+10]:[$1000+11]] = [$2000] = $A3

(Analogous to C statements like : abc = ∗p[3];) 19

Addressing: Accumulator D Offset Indirect Mode

• Similar to constant offset indirect mode except that the
offset is now the 16-bit quantity in accumulator D
– run-time determined offset;

• Example:

ldx #$1000
ldd #$200
movw #$3800, $1200
movb #$5F, $3800
…
ldaa [D,X] ; accumulator D offset indirect index mode

; A  [[X] + [D]] = [[$1000+$200]]=
; [[$1200]] = [$3800] = $5F

(Analogous to C statements like : abc = ∗p[k];)
20

Instruction Examples

• Following slides will give some examples of commonly
used HCS12 instructions

• Start with some data transfer instructions

21

LOAD and STORE Instructions

• LOAD instruction copies data from memory location into an
accumulator or register
– can use all memory addressing modes

• STORE instruction copies data from accumulator or register
into memory location
– can use all memory addressing modes except immediate

• Number of bits copied (8 or 16) to or from memory depends
on size of accumulator or register

• N and Z flags of condition code register (CCR) are updated
– V (overflow) flag set to zero
– C (carry) flag is left unchanged

ldaa 0,X
stab $20
stx $8000
ldd #100 22

Summary of LOAD instructions

23

Mnemonic Function Operation
ldaa Load accumulator A A  [M]
ldab Load accumulator B B  [M]
ldd Load accumulator D A:B  [M]:[M+1]
lds Load stack pointer SP  [M]:[M+1]
ldx Load index register X X  [M]:[M+1]
ldy Load index register Y Y  [M]:[M+1]
leas Load effective address into SP* SP  effective address
leax Load effective address into X* X  effective address
leay Load effective address into Y* Y  effective address

* loads effective address (rather than value) of operand – only used with
indexed addressing modes

Summary of STORE instructions

24

Mnemonic Function Operation
staa Store accumulator A M  [A]
stab Store accumulator B M  [B]
std Store accumulator D M:M+1  [A]:[B]
sts Store stack pointer M:M+1  SP
stx Store index register X M:M+1  X
sty Store index register Y M:M+1  Y

Example: Indexed data structures

• Index registers and indexed addressing give convenient
mechanism for dealing with complex data structures

• Suppose data consists of number of records with following
8 byte structure:
– ID (number): 4 bytes
– Height (inches): 1 byte
– Weight (pounds): 2 bytes
– Age (years): 1 byte

• A particular record is stored in memory starting at $6000:

ldx #$6000 ;sets X to point to beginning of record
ldd 5,X ;copy weight into D
staa 7,X ;copy A into age field
leax 8,X ;increment X to point to next record

25

TRANSFER Instruction

• Transfer instruction (TFR) copies data from one register or
accumulator to another register or accumulator

TFR r1, r2

– where r1 (source register) and r2 (destination register) can be any
one of (A, B, CCR, D, X, Y, SP)

• Contents of source register are unchanged
• Condition codes not affected (unless CCR is destination)
• 8 to 16 bit transfers are sign extended
• 16 to 8-bit transfers are truncated to LSByte

tfr D,X ; X  [D]
tfr X,B ; B  X[7:0]
tfr A,SP ; SP  [A](sign-extended to 16 bits)
tfr B,CCR ; CCR  [B]

26

EXCHANGE Instruction

• Exchange instruction (EXG) swaps data between a pair of
registers:

EXG r1, r2

– where r1 and r2 can be any one of (A, B, CCR, D, X, Y, SP)
• Condition codes not affected (unless CCR is one of reg’s)
• Avoid using EXG with two registers of different lengths (8bit

and16-bit)
– Complex set of rules to determine results

exg A,B ; A  [B]; B  [A]
exg X,SP ; X  [SP]; SP  [X]
exg Y,D ; D  [Y]; Y  [D]
exg Y,A ; Don’t do this!

27

MOVE Instructions

• These instructions copy data from one memory location
(src) to another memory location (dest)
– src can be IMM, IDX or EXT
– dest can be IDX or EXT

• Condition codes not affected

movb $1000,$2000

movb #100, $2800

movw 0,X,$2C00

movw 2, X+, 2, Y+
28

Mnemonic Function Operation
movb <src>, <dst> Move byte (8-bit) dest  [src]
movw <src>, <dst> Move word (16-bit) dest  [src]

ADD Instructions

• Destination is always a CPU register or accumulator
– destination register is also one of input operands

• Some instructions include the C flag as a carry-in
– Allows multi-precision addition or subtraction

• Update the C, Z, V and N flags (and some the H flag)

29

Mnemonic Function Operation
aba Add B to A A  [A] + [B]
abx Add B to X X  [X] + [B]
aby Add B to Y Y  [Y] + [B]
adda <opr> Add memory to A A  [A] + [opr]
addb <opr> Add memory to B B  [B] + [opr]
adca <opr> Add memory to A with carry A  [A] + [opr] + C
adcb <opr> Add memory to B with carry B  [B] + [opr] + C
addd <opr> Add memory to D D  [D] + [opr]

ADD Instructions and Condition Codes

• Carry flag (C) is set to ‘1’ whenever there is a carry-out from
the MSBit

• Zero flag (Z) is set to ‘1’ whenever the result is zero

• Overflow flag (V) is set to ‘1’ whenever the operation leads
to an incorrect signed result

• Negative Flag (N) is set to ‘1’ whenever the result is
negative (MSBit =1)

30

SUBTRACT Instructions (cont.)

31

Mnemonic Function Operation
sba Subtract B from A A  [A] – [B]
suba <opr> Subtract memory from A A  [A] – [opr]
subb <opr> Subtract memory from B B  [B] – [opr]
sbca <opr> Subtract with borrow from A A  [A] – [opr] – C
sbcb <opr> Subtract with borrow from B B  [B] – [opr] – C
subd <opr> Subtract memory from D D  [D] – [opr]

Example Code 1

• Write an instruction sequence to add 5 to the data in
memory location $20

32

Example Code 2

• Write an instruction sequence to add the byte in
memory location pointed to by the X register and the
following byte and place the sum in the memory
location pointed to by the Y register

33

Example Code 3

• Write an instruction sequence to add the numbers
stored at $1000, $1001 and $1002 and store the sum
in location $1004

34

Example Code 4

• Write an instruction sequence to swap the two bytes
stored at locations $1000 and $1001

35

Example Code 5

• Write an instruction sequence to add the 16-bit data
in memory locations $1000 and $1001 to the 16-bit
data pointed to by register X and store the result in
memory locations $2000 and $2001

36

	CPE 390: Microprocessor Systems�Spring 2018
	HCS12 Microcontroller
	HCS12 Microcontroller
	CPU Registers
	More on Registers
	Number Bases
	Memory Addressing
	Instruction Format
	Instruction Example
	Operand Addressing
	Addressing Modes
	Addressing: Immediate Mode
	Addressing: Extended Mode
	Addressing: Constant Offset Indexed Mode
	Addressing: Accumulator Offset Indexed Mode
	Addressing: Auto Inc/Dec Indexed Mode
	Addressing: Auto Inc/Dec Indexed Mode
	Examples of Auto Inc/Dec Indexed Mode
	Addressing: Constant Offset Indirect Mode
	Addressing: Accumulator D Offset Indirect Mode
	Instruction Examples
	LOAD and STORE Instructions
	Summary of LOAD instructions
	Summary of STORE instructions
	Example: Indexed data structures
	TRANSFER Instruction
	EXCHANGE Instruction
	MOVE Instructions
	ADD Instructions
	ADD Instructions and Condition Codes
	SUBTRACT Instructions (cont.)
	Example Code 1
	Example Code 2
	Example Code 3
	Example Code 4
	Example Code 5

