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Try These…

1. What is 2710 in 8-bit binary?
2. What is -2710 in 8-bit binary?
3. What is %10011010 (unsigned) in decimal?
4. What is %10011010 (signed) in decimal?
5. What is %10011010 in hex?
6. What is %10101101 + %00100111 in binary (unsigned)
7. What is %10101101 + %00100111 in binary (signed)
8. What is 29910 in 16-bit hex?
9. What is $1A3F in decimal?
10.What is $39C2 + $A175 in hex?
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What is Assembly Language?

• Assembly Language (assembly code) allows a programmer to 
specify machine code instructions and data that should be loaded 
into microprocessor memory prior to program execution.
– Machine code instructions are specified using mnemonics and 

address labels

– Data represents initial values of program variables

• Assembler translates assembly code mnemonics & symbols into 
raw binary data to be loaded into microprocessor memory 3
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Structure of a HCS12 Assembly Program

• Assembler Directives
– Define data and symbols
– Reserve and initialize memory locations
– Set assembler and linking conditions
– Specify output format
– Specify end of program

• Assembly Language Instructions
– mnemonic representation of HCS12 machine code instructions

• Comments
– Explanation and documentation
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You will find three kinds of statements in assembly program:



Program Structure: Example Code

ORG $800
results: DS.B 4 ;reserve 4 bytes for result
inc_value: EQU $30 ;symbol to represent data
din: DC.B $1122 ;label & initialize data

ORG $900 ;program begins
ldd din ;load $1122 into D
subd #10
std results
adda #inc_value
std results+2
END ;program ends
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Fields of an HCS12 Instruction

• Label Field
– optional: usually starts from first column
– start with a letter followed by letters, digits or ( _ or .)
– can start any column if ended with a colon :

• Operation (Opcode) Field
– mnemonic machine code instructions or assembler directive
– is separated from label or beginning of line by at least one space

• Operand Field
– operands for instructions or arguments for assembler directives
– separated from operation field by at least one space

• Comment Field
– optional: starts with ;
– separated from operation/operand field by at least one space
– a line that starts with * or ; is a comment 6

loop: adda #$40 ;add $40 to accumulator A



Some Assembler Directives

• END
– Ends program to be processed by assembler
– Any statement after END is ignored

• ORG
– Assembler uses a location counter to keep track of current 

memory location 
• where next machine code byte or data byte should be placed

– ORG directive sets a new value into the location counter
– for example:

ORG $1000
ldab #$FF

will place the opcode byte for the “ldab” instruction at memory 
address $1000 7
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Initialize Memory Directives

• DC.B (define constant byte)
– define value of byte (or bytes) at current memory location
– location counter is updated to point to next byte address
– value can be specified by expression

• DC.W (define constant word)
– define value of 2-byte word(s)
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ORG $4000
array: DC.B $A3

DC.B $11, $22, $33
DC.W $1234, array-2

$A3
$11
$22
$33
$12
$34
$3F
$FE

$4000
$4001
$4002
$4003
$4004
$4005
$4006
$4007



Initialize Text String

• DC.B can also be used to define and load a string of ascii characters
– string specified using quotes (“”)
– each character represented by one-byte ascii code
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$65
$6E
$74
$65
$72
$20
$79
$2F

$1000
$1001
$1002
$1003
$1004
$1005
$1006
$1007

$6E
$3A

$1008
$1009

e
n
t
e
r
<sp>
y
/
n
:

ORG $1000
msg: DC.B “enter y/n:”



Initialize Memory Directives

• DCB.B (define constant block of bytes)
– fill a block of memory locations with same one-byte value
– syntax is:   DCB.B   count ,value
– value is optional – default value is $00

• DCB.W (define constant block of words)
– fill a block of memory with same two-byte value
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ORG $3000
space_line: DCB.B 64, $20

$20
$20

$20
$20

$3000
$3001

$303E
$303F

64
locations



Reserve Memory Directives
• DS.B (define storage byte)

– reserves (and optionally labels) number of bytes at current 
memory location

– location counter is updated to point to next byte address 
following the reserved space

– reserved locations are not initialized

• DS.W (define storage word)
– reserves, and optionally labels: (# words X 2) bytes
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ORG $1400
buffer: DS.B $100 ;reserves 256 bytes of memory from $1400

;to $14FF with “buffer” labeling first byte
wbuf: DS.W 20 ;reserves 20 words (40 bytes) of memory from

;$1500 to $1527 with “wbuf” labeling first byte



Equate Directive
• EQU (equate)

– assigns a value (rather than a memory address) to a label
– does not affect memory contents
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loop_count: EQU 16
…
ldaa #loop_count ;load 16 into accumulator A



Assembler Directive Examples

• Show the contents of memory resulting from the 
following assembler directives:

• Show results as a table:

– ascii code for ‘b’ is $62, ascii code for ‘c’ is $63, ascii code for ‘d’ is $64 13

ORG $4800
xyz: EQU 24
abc: DC.B $20, 16

DC.W $21, $1ACD

res: DS.B 3
DC.B “bcd”
DC.W abc+xyz label address data



Software Development Process

• Problem definition: 
– Identify precisely what needs to be done

• Develop a plan or algorithm
– computational procedure that takes a set of inputs and produces 

required outputs
– may be expressed as a set of steps that need to be performed
– may include iteration and sub-procedures or subroutines
– need to specify data structures that may be required
– algorithm may be expressed in pseudo-code (e.g. A  A+1)
– algorithm code may be expressed in flow-chart

• Programming
– convert computational (or flowchart) steps into executable 

statements and data structures in target language 
• Program testing & debugging
• Program maintenance
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Flow-Chart Symbols
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Programs to do Simple Arithmetic

• Write a program starting at memory location $1500 to subtract 
the contents of memory location $1005 from the sum of 
memory locations $1000 and $1002 and store the difference 
at $1010.
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• Solution:
Step1: Load contents of 
memory loc. $1000 into A

Step2: Add contents of 
memory loc. $1002 to A

Step3: Subtract contents of 
memory loc. $1005 from A

Step4: Store contents of A to 
memory loc. $1010

Start

A  [$1000]

A  [A] + [$1002]

A  [A] - [$1005]

$1010  [A]

End



Algorithm to Assembly Code
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ORG $1500 ; starting address
ldaa $1000 ; A  [$1000]
adda $1002 ; A  [A] + [$1002]
suba $1005 ; A  [A] - [$1005]
staa $1010 ; $1010  [A]
bgnd ; break to debugger
END ;end of program

Start

A  [$1000]

A  [A] + [$1002]

A  [A] - [$1005]

$1010  [A]

End



More on Arithmetic (Add/Sub)

• We know how to add 8-bit quantities using A or B accumulator:

• and we can add 16-bit quantities using D accumulator:

• How can we add quantities of greater precision (e.g. 24-bit) ?
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ldaa $1000 ; add 8-bit data in $1000
adda $1001 ; to 8-bit data in $1001
staa $2000 ; and store 8-bit result in $2000

ldd $1000 ; add 16-bit data in $1000:$1001
addd $1002 ; to 16-bit data in $1002:$1003
std $2000 ; and store 16-bit result in $2000:$2001



Carry/Borrow Flag

• Carry is LSB of CCR

• Carry acts like the nth result bit when doing n-bit add/sub
• Carry set to ‘1’ whenever addition generates carry-out
• Carry set to ‘1’ whenever subtraction requires borrow-out

• also 16-bit:
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S X H I N Z V C

20
+30
0 50

ldaa #$20
adda #$30

ldaa #$93
adda #$8B

93
+8B
1 1E

96
–3A
0 5C

ldaa #$96
suba #$3A

ldaa #$27
suba #$54

27
–54
1 D3

A200
+7000
1 1200

ldd #$A200
addd #$7000



Multi-precision Addition

• Carry bit allows us to do multi-precision arithmetic
– i.e. arithmetic on numbers whose precision is greater than that of 

the ALU

• For example how do we add $59A183 to $5482DB ?

• Solution:
Step1: Add $A183 to $82DB and remember carry
Step2: Store 16-bit result as least significant two bytes of answer
Step3: Add $59 to $54 with carry from step 1
Step4: Store 8-bit result as MSbyte of answer
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32-bit Arithmetic

• Write a program at memory location $4000 to add 4-byte  
numbers that are stored at $1000~$1003 and $1004~$1007 
and store the sum at locations $1010~1013
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Multiplication

• Write an instruction sequence to multiply (unsigned) register X 
by register Y and store result in $1000~$1003

tfr x,d ;transfer X operand into D
emul ;perform multiplication
sty $1000 ;save upper 16-bits of product
std $1002 ;save lower 16-bits of product
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Mnemonic Function Operation

emul Unsigned 16 x 16 multiply Y:D  [D] x [Y]

emuls Signed 16 x 16 multiply Y:D  [D] x [Y]

mul Unsigned 8 x 8 multiply D  [A] x [B]



Multiplication

• n1 and n2 are signed 16-bit integers and n3 is a 32-bit signed 
integer. Use assembler directives to reserve space for n1, n2 and 
n3 at memory locations $1000, $1002 and $1004 respectively. 

Write code starting at $4000 to perform:  n3 = n1 * n2
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Mnemonic Function Operation

emul Unsigned 16 x 16 multiply Y:D  [D] x [Y]

emuls Signed 16 x 16 multiply Y:D  [D] x [Y]

mul Unsigned 8 x 8 multiply D  [A] x [B]



Division

• Remember that if divisor > dividend, then quotient = 0
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Mnemonic Function Operation

ediv Unsigned 32 by 16 divide 𝑌𝑌 ← 𝑌𝑌 : 𝐷𝐷 ÷ [𝑋𝑋]
𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

edivs Signed 32 by 16 divide 𝑌𝑌 ← 𝑌𝑌 : 𝐷𝐷 ÷ [𝑋𝑋]
𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

idiv Unsigned 16 by 16 divide 𝑋𝑋 ← 𝐷𝐷 ÷ 𝑋𝑋
𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

idivs Signed 16 by 16 divide 𝑋𝑋 ← 𝐷𝐷 ÷ 𝑋𝑋
𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟



Integers Math and Precision

• When performing integer arithmetic (especially 
multiplication and division), important to keep track of 
potential size of results to avoid overflow and/or loss 
of precision

• Suppose we want to calculate: 

• Does the order of the operations matter?

• Correct answer is 2608.6956
– (but we can only do integer arithmetic)

• If I do multiply first (emul followed by ediv), I get 2608

• If I do divide first ( ediv followed by emul), I get 2500
25

1200 × 2500
1150



Rounding

• If we take the quotient as being the answer to a 
divide operation (and ignore the remainder), the 
result is truncated to the closest integer that is less 
than the correct answer ( 2608 instead of 2608.6956)

• A better result would be to round to the nearest 
integer (2609). This can be achieved by adding half 
of the divisor to the dividend before executing the 
divide operation:

• This effectively adds 0.5 to the answer before 
truncation.
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𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑞𝑞𝑟𝑟𝑟𝑟𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑞𝑞 =
𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + ⁄𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟 2

𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟



Integer Precision: Example

• Multiply the unsigned 16-bit number in locations 
$1000:$1001 by 1.414 (approx. to 2), truncating 
result to nearest integer.

• Multiply the unsigned 16-bit number in locations 
$1000:$1001 by 1.414 (approx. to 2), rounding 
result to nearest integer.
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