
CPE 390: Microprocessor Systems
Spring 2018

Lecture 5
Assembly Programming: Arithmetic

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

Try These…

1. What is 2710 in 8-bit binary?
2. What is -2710 in 8-bit binary?
3. What is %10011010 (unsigned) in decimal?
4. What is %10011010 (signed) in decimal?
5. What is %10011010 in hex?
6. What is %10101101 + %00100111 in binary (unsigned)
7. What is %10101101 + %00100111 in binary (signed)
8. What is 29910 in 16-bit hex?
9. What is $1A3F in decimal?
10.What is $39C2 + $A175 in hex?

2

What is Assembly Language?

• Assembly Language (assembly code) allows a programmer to
specify machine code instructions and data that should be loaded
into microprocessor memory prior to program execution.
– Machine code instructions are specified using mnemonics and

address labels

– Data represents initial values of program variables

• Assembler translates assembly code mnemonics & symbols into
raw binary data to be loaded into microprocessor memory 3

Assembler
Assembly
Language
Program

Object Code
(Binary data to be

loaded into
specific memory

locations)

Structure of a HCS12 Assembly Program

• Assembler Directives
– Define data and symbols
– Reserve and initialize memory locations
– Set assembler and linking conditions
– Specify output format
– Specify end of program

• Assembly Language Instructions
– mnemonic representation of HCS12 machine code instructions

• Comments
– Explanation and documentation

4

You will find three kinds of statements in assembly program:

Program Structure: Example Code

ORG $800
results: DS.B 4 ;reserve 4 bytes for result
inc_value: EQU $30 ;symbol to represent data
din: DC.B $1122 ;label & initialize data

ORG $900 ;program begins
ldd din ;load $1122 into D
subd #10
std results
adda #inc_value
std results+2
END ;program ends

5

assembler directive
label

comment

opcode operand

assembly
language
instruction

Fields of an HCS12 Instruction

• Label Field
– optional: usually starts from first column
– start with a letter followed by letters, digits or (_ or .)
– can start any column if ended with a colon :

• Operation (Opcode) Field
– mnemonic machine code instructions or assembler directive
– is separated from label or beginning of line by at least one space

• Operand Field
– operands for instructions or arguments for assembler directives
– separated from operation field by at least one space

• Comment Field
– optional: starts with ;
– separated from operation/operand field by at least one space
– a line that starts with * or ; is a comment 6

loop: adda #$40 ;add $40 to accumulator A

Some Assembler Directives

• END
– Ends program to be processed by assembler
– Any statement after END is ignored

• ORG
– Assembler uses a location counter to keep track of current

memory location
• where next machine code byte or data byte should be placed

– ORG directive sets a new value into the location counter
– for example:

ORG $1000
ldab #$FF

will place the opcode byte for the “ldab” instruction at memory
address $1000 7

$C6
$FF

$1000
$1001

opcode
operand

Initialize Memory Directives

• DC.B (define constant byte)
– define value of byte (or bytes) at current memory location
– location counter is updated to point to next byte address
– value can be specified by expression

• DC.W (define constant word)
– define value of 2-byte word(s)

8

ORG $4000
array: DC.B $A3

DC.B $11, $22, $33
DC.W $1234, array-2

$A3
$11
$22
$33
$12
$34
$3F
$FE

$4000
$4001
$4002
$4003
$4004
$4005
$4006
$4007

Initialize Text String

• DC.B can also be used to define and load a string of ascii characters
– string specified using quotes (“”)
– each character represented by one-byte ascii code

9

$65
$6E
$74
$65
$72
$20
$79
$2F

$1000
$1001
$1002
$1003
$1004
$1005
$1006
$1007

$6E
$3A

$1008
$1009

e
n
t
e
r
<sp>
y
/
n
:

ORG $1000
msg: DC.B “enter y/n:”

Initialize Memory Directives

• DCB.B (define constant block of bytes)
– fill a block of memory locations with same one-byte value
– syntax is: DCB.B count ,value
– value is optional – default value is $00

• DCB.W (define constant block of words)
– fill a block of memory with same two-byte value

10

ORG $3000
space_line: DCB.B 64, $20

$20
$20

$20
$20

$3000
$3001

$303E
$303F

64
locations

Reserve Memory Directives
• DS.B (define storage byte)

– reserves (and optionally labels) number of bytes at current
memory location

– location counter is updated to point to next byte address
following the reserved space

– reserved locations are not initialized

• DS.W (define storage word)
– reserves, and optionally labels: (# words X 2) bytes

11

ORG $1400
buffer: DS.B $100 ;reserves 256 bytes of memory from $1400

;to $14FF with “buffer” labeling first byte
wbuf: DS.W 20 ;reserves 20 words (40 bytes) of memory from

;$1500 to $1527 with “wbuf” labeling first byte

Equate Directive
• EQU (equate)

– assigns a value (rather than a memory address) to a label
– does not affect memory contents

12

loop_count: EQU 16
…
ldaa #loop_count ;load 16 into accumulator A

Assembler Directive Examples

• Show the contents of memory resulting from the
following assembler directives:

• Show results as a table:

– ascii code for ‘b’ is $62, ascii code for ‘c’ is $63, ascii code for ‘d’ is $64 13

ORG $4800
xyz: EQU 24
abc: DC.B $20, 16

DC.W $21, $1ACD

res: DS.B 3
DC.B “bcd”
DC.W abc+xyz label address data

Software Development Process

• Problem definition:
– Identify precisely what needs to be done

• Develop a plan or algorithm
– computational procedure that takes a set of inputs and produces

required outputs
– may be expressed as a set of steps that need to be performed
– may include iteration and sub-procedures or subroutines
– need to specify data structures that may be required
– algorithm may be expressed in pseudo-code (e.g. A A+1)
– algorithm code may be expressed in flow-chart

• Programming
– convert computational (or flowchart) steps into executable

statements and data structures in target language
• Program testing & debugging
• Program maintenance

14

Flow-Chart Symbols

15

Terminal

Process

Input or
Output

Decision
? Ayes

no

Subroutine

A

B

on-page connector

off-page connector

Programs to do Simple Arithmetic

• Write a program starting at memory location $1500 to subtract
the contents of memory location $1005 from the sum of
memory locations $1000 and $1002 and store the difference
at $1010.

16

• Solution:
Step1: Load contents of
memory loc. $1000 into A

Step2: Add contents of
memory loc. $1002 to A

Step3: Subtract contents of
memory loc. $1005 from A

Step4: Store contents of A to
memory loc. $1010

Start

A [$1000]

A [A] + [$1002]

A [A] - [$1005]

$1010 [A]

End

Algorithm to Assembly Code

17

ORG $1500 ; starting address
ldaa $1000 ; A [$1000]
adda $1002 ; A [A] + [$1002]
suba $1005 ; A [A] - [$1005]
staa $1010 ; $1010 [A]
bgnd ; break to debugger
END ;end of program

Start

A [$1000]

A [A] + [$1002]

A [A] - [$1005]

$1010 [A]

End

More on Arithmetic (Add/Sub)

• We know how to add 8-bit quantities using A or B accumulator:

• and we can add 16-bit quantities using D accumulator:

• How can we add quantities of greater precision (e.g. 24-bit) ?

18

ldaa $1000 ; add 8-bit data in $1000
adda $1001 ; to 8-bit data in $1001
staa $2000 ; and store 8-bit result in $2000

ldd $1000 ; add 16-bit data in $1000:$1001
addd $1002 ; to 16-bit data in $1002:$1003
std $2000 ; and store 16-bit result in $2000:$2001

Carry/Borrow Flag

• Carry is LSB of CCR

• Carry acts like the nth result bit when doing n-bit add/sub
• Carry set to ‘1’ whenever addition generates carry-out
• Carry set to ‘1’ whenever subtraction requires borrow-out

• also 16-bit:

19

S X H I N Z V C

20
+30
0 50

ldaa #$20
adda #$30

ldaa #$93
adda #$8B

93
+8B
1 1E

96
–3A
0 5C

ldaa #$96
suba #$3A

ldaa #$27
suba #$54

27
–54
1 D3

A200
+7000
1 1200

ldd #$A200
addd #$7000

Multi-precision Addition

• Carry bit allows us to do multi-precision arithmetic
– i.e. arithmetic on numbers whose precision is greater than that of

the ALU

• For example how do we add $59A183 to $5482DB ?

• Solution:
Step1: Add $A183 to $82DB and remember carry
Step2: Store 16-bit result as least significant two bytes of answer
Step3: Add $59 to $54 with carry from step 1
Step4: Store 8-bit result as MSbyte of answer

20

32-bit Arithmetic

• Write a program at memory location $4000 to add 4-byte
numbers that are stored at $1000~$1003 and $1004~$1007
and store the sum at locations $1010~1013

21

Multiplication

• Write an instruction sequence to multiply (unsigned) register X
by register Y and store result in $1000~$1003

tfr x,d ;transfer X operand into D
emul ;perform multiplication
sty $1000 ;save upper 16-bits of product
std $1002 ;save lower 16-bits of product

22

Mnemonic Function Operation

emul Unsigned 16 x 16 multiply Y:D [D] x [Y]

emuls Signed 16 x 16 multiply Y:D [D] x [Y]

mul Unsigned 8 x 8 multiply D [A] x [B]

Multiplication

• n1 and n2 are signed 16-bit integers and n3 is a 32-bit signed
integer. Use assembler directives to reserve space for n1, n2 and
n3 at memory locations $1000, $1002 and $1004 respectively.

Write code starting at $4000 to perform: n3 = n1 * n2

23

Mnemonic Function Operation

emul Unsigned 16 x 16 multiply Y:D [D] x [Y]

emuls Signed 16 x 16 multiply Y:D [D] x [Y]

mul Unsigned 8 x 8 multiply D [A] x [B]

Division

• Remember that if divisor > dividend, then quotient = 0

24

Mnemonic Function Operation

ediv Unsigned 32 by 16 divide 𝑌𝑌 ← 𝑌𝑌 : 𝐷𝐷 ÷ [𝑋𝑋]
𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

edivs Signed 32 by 16 divide 𝑌𝑌 ← 𝑌𝑌 : 𝐷𝐷 ÷ [𝑋𝑋]
𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

idiv Unsigned 16 by 16 divide 𝑋𝑋 ← 𝐷𝐷 ÷ 𝑋𝑋
𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

idivs Signed 16 by 16 divide 𝑋𝑋 ← 𝐷𝐷 ÷ 𝑋𝑋
𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Integers Math and Precision

• When performing integer arithmetic (especially
multiplication and division), important to keep track of
potential size of results to avoid overflow and/or loss
of precision

• Suppose we want to calculate:

• Does the order of the operations matter?

• Correct answer is 2608.6956
– (but we can only do integer arithmetic)

• If I do multiply first (emul followed by ediv), I get 2608

• If I do divide first (ediv followed by emul), I get 2500
25

1200 × 2500
1150

Rounding

• If we take the quotient as being the answer to a
divide operation (and ignore the remainder), the
result is truncated to the closest integer that is less
than the correct answer (2608 instead of 2608.6956)

• A better result would be to round to the nearest
integer (2609). This can be achieved by adding half
of the divisor to the dividend before executing the
divide operation:

• This effectively adds 0.5 to the answer before
truncation.

26

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑞𝑞𝑟𝑟𝑟𝑟𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑞𝑞 =
𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + ⁄𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟 2

𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟

Integer Precision: Example

• Multiply the unsigned 16-bit number in locations
$1000:$1001 by 1.414 (approx. to 2), truncating
result to nearest integer.

• Multiply the unsigned 16-bit number in locations
$1000:$1001 by 1.414 (approx. to 2), rounding
result to nearest integer.

27

	CPE 390: Microprocessor Systems�Spring 2018
	Try These…
	What is Assembly Language?
	Structure of a HCS12 Assembly Program
	Program Structure: Example Code
	Fields of an HCS12 Instruction
	Some Assembler Directives
	Initialize Memory Directives
	Initialize Text String
	Initialize Memory Directives
	Reserve Memory Directives
	Equate Directive
	Assembler Directive Examples
	Software Development Process
	Flow-Chart Symbols
	Programs to do Simple Arithmetic
	Algorithm to Assembly Code
	More on Arithmetic (Add/Sub)
	Carry/Borrow Flag
	Multi-precision Addition
	32-bit Arithmetic
	Multiplication
	Multiplication
	Division
	Integers Math and Precision
	Rounding
	Integer Precision: Example

