
CPE 390: Microprocessor Systems
Spring 2018

Lecture 6
Assembly Programming: Branch & Iteration

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

Iteration

• Most interesting algorithms involve some form of iteration

• Iteration allows us to work through large bit sequences,
data structures, problem sets, data structures etc.,
repetitively using the same set of operations on different
data in such a manner that we progress towards a final
result.

• Iteration means we don’t have to explicitly code every
operation that occurs in a program

• Iteration is implemented in assembly code (also in high
level languages) as various kinds of loops

• Four basic loop constructs:

2

Program Loops

do operation S forever

3

S

i  n1

i ≤ n2 ?

S

i  i+1

Yes

No

for i = n1 to n2 do operation S

Program Loops

4

C ?

S

True

False

repeat statement S until C

C ? S

False

True
while C do statement S

Condition Code Register

• Program loops are implemented using conditional
branch instructions

• Execution of these depends on contents of CCR

• CCR is updated whenever an arithmetic or compare
instruction is executed

5

S X H I N Z V C
7 6 5 4 3 2 1 0

carry
overflow
zero

half-carry
negative

Condition Codes (Flags)

• Carry flag is set (reset) whenever an arithmetic or compare
instruction causes (does not cause) a carry-out from MSBit of
the result

• Zero flag is set (reset) whenever an arithmetic or compare
instruction generates a zero (non-zero) result

• Negative flag is set (reset) whenever an arithmetic or compare
instruction generates a negative (positive or zero) result

• oVerflow flag is set (reset) whenever an arithmetic or compare
instruction generates an incorrect or out-of-range (correct) result
– assumes the operands and result are interpreted as two’s

complement signed quantities.

6

S X H I N Z V C
7 6 5 4 3 2 1 0

What’s the Difference between Carry and Overflow?

7

Unsigned
(range: 0 to15)

Signed
(range: -8 to +7)

CCR
Result

1 0 1 0 (10)
+ 1 1 1 1 (15)

1 1 0 0 1 (9)

1 0 1 0 (-6)
+ 1 1 1 1 (-1)

1 1 0 0 1 (-7)

C = 1
V = 0

0 1 1 1 (7)
+ 0 0 1 1 (3)

0 1 0 1 0 (10)

0 1 1 1 (7)
+ 0 0 1 1 (3)

0 1 0 1 0 (-6)

C = 0
V = 1

1 1 0 0 (12)
+ 1 0 1 1 (11)

1 0 1 1 1 (7)

1 1 0 0 (-4)
+ 1 0 1 1 (-5)

1 0 1 1 1 (7)

C = 1
V = 1

Condition Code Example

8

N Z V C
clra 0 1 0 0
adda #$20 0 0 0 0
suba #$30 1 0 0 1
tsta 1 0 0 0
cmpa #$F0 0 1 0 0
adda #$70 0 0 0 1
adda #$50 1 0 1 0

Branch Instructions

• Branch instructions (conditionally) modify the program
counter (PC) so that the next instruction fetched may not be
the instruction immediately following the current instruction
– program will either branch to specified target address or continue to

the next sequential instruction depending on the specified condition

• Branch instruction specifies a signed offset (in bytes)

• This offset is (conditionally) added to the PC to form the
address of the instruction we are to branch to
– positive offset branches forward
– negative offset branches backward

• Programmer almost never specifies a numerical offset
– We use labels and let the assembler work out the correct offset

9

Branch to Label

10

• •
• •
adda #$A3
bcs lab1
ldaa #26
• •
• •

lab1: ldaa #72
• •
• •

branch to
label lab1 if
carry set

continue to
next instruction
if carry not set

Branch Instructions

Four types of branch instructions:

• Unconditional: always execute

• Simple: branch depends on test of specific CCR bit

• Unsigned: branch taken after a comparison or test of unsigned
numbers (uses combination of CCR bits)

• Signed: branch taken after a comparison or test of signed
numbers (uses combination of CCR bits)

Two categories of branch instructions:

Short branches: 8-bit signed offset in range of -128 to +127 bytes

Long branches: 16-bit signed offset
11

Short Branch Instructions (1)

12

• Unconditional Branches:

• bra is an unconditional branch (jump or goto)

• brn is effectively a nop (no-operation)
– just continue to next instruction
– can be used as debugging instruction to temporarily replace

a conditional branch instruction

Mnemonic Function Branch Test
bra Branch always True
brn Branch never False

Short Branch Instructions (2)

13

• Simple Branches
– depend on value of a single condition code

* These instructions are called “branch if equal” and “branch if not equal”
because they usually follow a compare instruction in which one operand
is subtracted from another

Mnemonic Function Branch Test
bcc Branch if carry clear C=0
bcs Branch if carry set C=1
beq Branch if equal* Z=1
bne Branch if not equal* Z=0
bmi Branch if minus N=1
bpl Branch if plus (or zero) N=0
bvc Branch if overflow clear V=0
bvs Branch if overflow set V=1

Simple Branch Example

14

• •
• •
ldaa #8

abc: ldx 2, Y+
• •
• •

suba #1
xyz: bne abc

• •
• •

what is this
code doing?

Short Branch Instructions (3)

15

• Unsigned Branches:

• These branches assume two unsigned quantities have
already been subtracted (or compared) using one of:
– SBCA, SBCB, SUBA, SUBB, SUBD, CMPA, CMPB, CPD, CPS,

CPX or CPY. For example:

– both will branch to label abc if contents of acc B are higher than
(greater than in an unsigned sense) the number $27

– subb will change contents of acc B, cmpb will not.

Mnemonic Function Branch Test
bhi Branch if higher C + Z = 0
bhs Branch if higher or same C = 0
blo Branch if lower C = 1
bls Branch of lower or same C + Z = 1

subb #$27
bhi abc

‘+’ means logical OR

cmpb #$27
bhi abcor

Short Branch Instructions (4)

16

• Signed Branches

• These branches assume two signed quantities have
already been compared or subtracted using one of:
– CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,

SUBA, SUBB, or SUBD. For example:

– will branch to label abc if contents of acc B are greater than
(in a signed sense) the number $27

– subb will change contents of acc B, cmpb will not.

Mnemonic Function Branch Test
bge Branch if greater than or equal N ⨁ V =0
bgt Branch if greater than Z + (N ⨁ V) =0
ble Branch if less than or equal Z + (N ⨁ V) =1
blt Branch if less than N ⨁ V =1

subb #$27
bgt abc

‘⨁’ means logical EXOR

cmpb #$27
bgt abcor

Long Branch Instructions

17

• The short branch instructions described so far, can
only branch to a location (-128 to +127) bytes relative
to current value of PC.
– used for local branches and small program loops

• To branch to a location outside of this range, need to
use long branch instructions

• To make a long branch, simply add letter ‘l’ to front of
mnemonic
– e.g. bgt (short) becomes lbgt (long)

• Assembler will give an error if you try to use a short
branch instruction to branch to a location that is out of
short branch range.

Branch Instructions: Example

18

• Draw a flowchart to describe what the following
instruction sequence accomplishes:

cmpa #$3B
bgt M23
addb #1
bra xyz

M23: subb #1
xyz: stab bval

Compare & Test Instructions

19

• Before a conditional branch can be executed, condition codes
need to be set up

• Compare & test instructions set up CCR without storing result
Mnemonic Function Branch Test

cba Compare A to B [A] – [B]
cmpa <opr> Compare A to memory [A] – [M]
cmpb <opr> Compare B to memory [B] – [M]
cpd <opr> Compare D to memory [D] – [M]:[M+1]
cps <opr> Compare SP to memory [SP] – [M]:[M+1]
cpx <opr> Compare X to memory [X] – [M]:[M+1]
cpy <opr> Compare Y to memory [Y] – [M]:[M+1]

Mnemonic Function Branch Test
tst <opr> Test memory for zero or minus [M] – $00
tsta Test A for zero or minus [A] – $00
tstb Test B for zero or minus [B] – $00

Useful Instructions: Clear, Complement & Negate

20

Mnemonic Function Operation
clr <opr> Clear memory to zero M  0
clra Clear A to zero A 0
clrb Clear B to zero B  0

Mnemonic Function Operation
com <opr> One’s complement memory M  $FF – [M]
coma One’s complement A A  $FF – [A]
comb One’s complement B B  $FF – [B]
neg <opr> Two’s complement memory M  $00 – [M]
nega Two’s complement A A  $00 – [A]
negb Two’s complement B B  $00 – [B]

Branching: Example

• Write an instruction sequence that will form the
absolute value of a signed 8-bit integer stored in
location $1000 and store the result in location $1004

21

Increment/Decrement Instructions

22

Mnemonic Function Operation
dec <opr> Decrement memory by 1 M  [M] – 1
deca Decrement A by 1 A [A] – 1
decb Decrement B by 1 B  [B] – 1
des Decrement SP by 1 SP  [SP] – 1
dex Decrement X by 1 X  [X] – 1
dey Decrement Y by 1 Y  [Y] – 1

Mnemonic Function Operation
inc <opr> Increment memory by 1 M  [M] + 1
inca Increment A by 1 A [A] + 1
incb Increment B by 1 B  [B] + 1
ins Increment SP by 1 SP  [SP] + 1
inx Increment X by 1 X  [X] + 1
iny Increment Y by 1 Y  [Y] + 1

Loop Example 1

23

• Write a program to add an array of N 8-bit numbers starting at
address $1000 and store the 16-bit sum at memory locations
$1100~$1101. Use a “for i = n1 to n2” looping construct

Start

i  0
sum  0

i= N ?

sum  sum + array[i]

i  i + 1

Stop
yes

no

N: EQU 20
ORG $1000

array: DC.B 1,2,3,4,5,6,7,8,9,10,11,12
DC.B 13,14,15,16,17,18,19,20
ORG $1100

sum: DS.B 2
i: DS.B 1

ORG $4000
clr i ; i=0
clr sum ; sum=0
clr sum+1
ldx #array ; pointer to array

Loop Example 1 (cont.)

24

Start

i  0
sum  0

i= N ?

sum  sum + array[i]

i  i + 1

Stop
yes

no

loop: ldaa i ; i
cmpa #N ; is i=N?
beq done
ldab a,x ; array[i]
ldy sum ; sum in Y
aby ; sum=sum+array[i]
sty sum ; update sum
inc i ; increment index
bra loop

done: bgnd ; return to monitor
END

Loop Primitive Instructions

25

• These increment/decrement loop counter (stored in register) and
conditionally branch in one instruction

– Range of branch is 9-bit (-256 to +255)

• cntr can be A, B, D, X, Y or SP, tar is branch target (label)
example:
dbeq Y, loop1 ; decrement Y and branch to loop1 if Y=0

Mnemonic Function Operation

dbeq cntr, tar Decrement counter and branch if = 0 cntr  [cntr] – 1
if [cntr] = 0 then branch

dbne cntr, tar Decrement counter and branch if ≠ 0 cntr  [cntr] – 1
if [cntr] ≠ 0 then branch

ibeq cntr, tar Increment counter and branch if = 0 cntr  [cntr] + 1
if [cntr] = 0 then branch

ibne cntr, tar Increment counter and branch if ≠ 0 cntr  [cntr] + 1
if [cntr] ≠ 0 then branch

tbeq cntr, tar Test counter and branch if = 0 if [cntr] = 0 then branch
tbne cntr, tar Test counter and branch if ≠ 0 if [cntr] ≠ 0 then branch

Loop Example 2

26

• Write a program to find the maximum element from an array of N
8-bit signed numbers starting at addr. $1000 and store that value
at memory location $1100. Use a “repeat until C” looping construct.

Start
max  array[0]

i  N – 1
ptr array+1

max < tmp ?

max  tmp

i  i – 1

Stop

no

no
i = 0 ? yes

yes

tmp  *ptr++

Loop Example 2 (cont.)

27

N: EQU 20
ORG $1000

array: DC.B 1,-3,5,-6,19,41,-53,28,-13,-42
DC.B 14,20,76,-29,-93,33,41,-8,61,4
ORG $1100

max: DS.B 1

ORG $4000
movb array, max ; init max=array[0]
ldx #array + 1 ; X points to array[1]
ldab #N –1 ; set loop count to N-1

loop: ldaa 1,X + ; load array value and incr pointer
cmpa max ; compare to current max
ble skip ; if <= max then skip update
staa max ; update max=array value

skip: dbne b,loop ; done yet?
here: bra here ; stay here

	CPE 390: Microprocessor Systems�Spring 2018
	Iteration
	Program Loops
	Program Loops
	Condition Code Register
	Condition Codes (Flags)
	What’s the Difference between Carry and Overflow?
	Condition Code Example
	Branch Instructions
	Branch to Label
	Branch Instructions
	Short Branch Instructions (1)
	Short Branch Instructions (2)
	Simple Branch Example
	Short Branch Instructions (3)
	Short Branch Instructions (4)
	Long Branch Instructions
	Branch Instructions: Example
	Compare & Test Instructions
	Useful Instructions: Clear, Complement & Negate
	Branching: Example
	Increment/Decrement Instructions
	Loop Example 1
	Loop Example 1 (cont.)
	Loop Primitive Instructions
	Loop Example 2
	Loop Example 2 (cont.)

