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Iteration

• Most interesting algorithms involve some form of iteration

• Iteration allows us to work through large bit sequences, 
data structures, problem sets, data structures etc., 
repetitively using the same set of operations on different 
data in such a manner that we progress towards a final 
result.

• Iteration means we don’t have to explicitly code every 
operation that occurs in a program

• Iteration is implemented in assembly code (also in high 
level languages) as various kinds of loops

• Four basic loop constructs:
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Program Loops

do operation S forever
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S

i  n1

i ≤ n2 ?

S

i  i+1

Yes

No

for i = n1 to n2 do operation S



Program Loops
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C ?

S

True

False

repeat statement S until C

C ? S

False

True
while C do statement S



Condition Code Register

• Program loops are implemented using conditional 
branch instructions

• Execution of these depends on contents of CCR

• CCR is updated whenever an arithmetic or compare 
instruction is executed
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S X H I N Z V C
7 6 5 4 3 2 1 0

carry
overflow
zero

half-carry
negative



Condition Codes (Flags)

• Carry flag is set (reset) whenever an arithmetic or compare 
instruction causes (does not cause) a carry-out from MSBit of 
the result

• Zero flag is set (reset) whenever an arithmetic or compare 
instruction generates a zero (non-zero) result

• Negative flag is set (reset) whenever an arithmetic or compare 
instruction generates a negative (positive or zero) result

• oVerflow flag is set (reset) whenever an arithmetic or compare 
instruction generates an incorrect or out-of-range (correct) result
– assumes the operands and result are interpreted as two’s 

complement signed quantities.
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S X H I N Z V C
7 6 5 4 3 2 1 0



What’s the Difference between Carry and Overflow?
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Unsigned
(range: 0 to15)

Signed
(range: -8 to +7)

CCR
Result

1 0 1 0     (10)
+ 1 1 1 1 (15)

1 1 0 0 1      (9)

1 0 1 0     (-6)
+ 1 1 1 1 (-1)

1 1 0 0 1     (-7)

C = 1
V = 0

0 1 1 1      (7)
+ 0 0 1 1 (3)

0 1 0 1 0     (10)

0 1 1 1      (7)
+ 0 0 1 1 (3)

0 1 0 1 0     (-6)

C = 0
V = 1

1 1 0 0 (12)
+ 1 0 1 1 (11)

1 0 1 1 1       (7)

1 1 0 0 (-4)
+ 1 0 1 1 (-5)

1 0 1 1 1       (7)

C = 1
V = 1



Condition Code Example
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N Z V C
clra 0 1 0 0
adda #$20 0 0 0 0
suba #$30 1 0 0 1
tsta 1 0 0 0
cmpa #$F0 0 1 0 0
adda #$70 0 0 0 1
adda #$50 1 0 1 0



Branch Instructions

• Branch instructions (conditionally) modify the program 
counter (PC) so that the next instruction fetched may not be 
the instruction immediately following the current instruction
– program will either branch to specified target address or continue to 

the next sequential instruction depending on the specified condition

• Branch instruction specifies a signed offset (in bytes)

• This offset is (conditionally) added to the PC to form the 
address of the instruction we are to branch to
– positive offset branches forward
– negative offset branches backward

• Programmer almost never specifies a numerical offset
– We use labels and let the assembler work out the correct offset
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Branch to Label
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• •
• •
adda #$A3
bcs lab1
ldaa #26
• •
• •

lab1: ldaa #72
• •
• •

branch to 
label lab1 if 
carry set

continue to 
next instruction 
if carry not set



Branch Instructions

Four types of branch instructions:

• Unconditional: always execute

• Simple: branch depends on test of specific CCR bit

• Unsigned: branch taken after a comparison or test of unsigned 
numbers (uses combination of CCR bits)

• Signed: branch taken after a comparison or test of signed 
numbers (uses combination of CCR bits)

Two categories of branch instructions:

Short branches: 8-bit signed offset in range of -128 to +127 bytes

Long branches: 16-bit signed offset 
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Short Branch Instructions (1)
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• Unconditional Branches:

• bra is an unconditional branch (jump or goto)

• brn is effectively a nop (no-operation)
– just continue to next instruction
– can be used as debugging instruction to temporarily replace 

a conditional branch instruction

Mnemonic Function Branch Test
bra Branch always True
brn Branch never False



Short Branch Instructions (2)
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• Simple Branches
– depend on value of a single condition code

*  These instructions are called “branch if equal” and “branch if not equal” 
because they usually follow a compare instruction in which one operand 
is subtracted from another

Mnemonic Function Branch Test
bcc Branch if carry clear C=0
bcs Branch if carry set C=1
beq Branch if equal* Z=1
bne Branch if not equal* Z=0
bmi Branch if minus N=1
bpl Branch if plus (or zero) N=0
bvc Branch if overflow clear V=0
bvs Branch if overflow set V=1



Simple Branch Example
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• •
• •
ldaa #8

abc: ldx 2, Y+
• •
• •

suba #1
xyz: bne abc

• •
• •

what is this 
code doing?



Short Branch Instructions (3)
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• Unsigned Branches:

• These branches assume two unsigned quantities have 
already been subtracted (or compared) using one of:
– SBCA, SBCB, SUBA, SUBB, SUBD, CMPA, CMPB, CPD, CPS, 

CPX or CPY. For example:

– both will branch to label abc if contents of acc B are higher than 
(greater than in an unsigned sense) the number $27

– subb will change contents of acc B,   cmpb will not.

Mnemonic Function Branch Test
bhi Branch if higher C + Z = 0
bhs Branch if higher or same C = 0
blo Branch if lower C = 1
bls Branch of lower or same C + Z = 1

subb #$27
bhi abc

‘+’ means logical OR

cmpb #$27
bhi abcor



Short Branch Instructions (4)
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• Signed Branches

• These branches assume two signed quantities have 
already been compared or subtracted using one of:
– CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, 

SUBA, SUBB, or SUBD. For example:

– will branch to label abc if contents of acc B are greater than 
(in a signed sense) the number $27 

– subb will change contents of acc B,   cmpb will not.

Mnemonic Function Branch Test
bge Branch if greater than or equal N ⨁ V =0
bgt Branch if greater than Z + (N ⨁ V) =0
ble Branch if less than or equal Z + (N ⨁ V) =1
blt Branch if less than N ⨁ V =1

subb #$27
bgt abc

‘⨁’ means logical EXOR

cmpb #$27
bgt abcor



Long Branch Instructions
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• The short branch instructions described so far, can 
only branch to a location (-128 to +127) bytes relative 
to current value of PC.
– used for local branches and small program loops

• To branch to a location outside of this range, need to 
use long branch instructions

• To make a long branch, simply add letter ‘l’ to front of 
mnemonic
– e.g. bgt (short) becomes lbgt (long)

• Assembler will give an error if you try to use a short 
branch instruction to branch to a location that is out of 
short branch range.



Branch Instructions: Example
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• Draw a flowchart to describe what the following 
instruction sequence accomplishes:

cmpa #$3B
bgt M23
addb #1
bra xyz

M23: subb #1
xyz: stab bval



Compare & Test Instructions
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• Before a conditional branch can be executed, condition codes 
need to be set up

• Compare & test instructions set up CCR without storing result
Mnemonic Function Branch Test

cba Compare A to B [A] – [B]
cmpa <opr> Compare A to memory [A] – [M]
cmpb <opr> Compare B to memory [B] – [M]
cpd <opr> Compare D to memory [D] – [M]:[M+1]
cps <opr> Compare SP to memory [SP] – [M]:[M+1]
cpx <opr> Compare X to memory [X] – [M]:[M+1]
cpy <opr> Compare Y to memory [Y] – [M]:[M+1]

Mnemonic Function Branch Test
tst <opr> Test memory for zero or minus [M] – $00
tsta Test A for zero or minus [A] – $00
tstb Test B for zero or minus [B] – $00



Useful Instructions: Clear, Complement & Negate
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Mnemonic Function Operation
clr <opr> Clear memory to zero M  0
clra Clear A to zero A 0
clrb Clear B to zero B  0

Mnemonic Function Operation
com     <opr> One’s complement memory M  $FF – [M] 
coma One’s complement A A  $FF – [A]  
comb  One’s complement B B  $FF – [B] 
neg <opr> Two’s complement memory M  $00 – [M] 
nega Two’s complement A A  $00 – [A]  
negb Two’s complement B B  $00 – [B] 



Branching: Example

• Write an instruction sequence that will form the 
absolute value of a signed 8-bit integer stored in 
location $1000 and store the result in location $1004
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Increment/Decrement Instructions
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Mnemonic Function Operation
dec <opr> Decrement memory by 1 M  [M] – 1
deca Decrement A by 1 A [A] – 1
decb Decrement B by 1 B  [B] – 1
des Decrement SP by 1 SP  [SP] – 1
dex Decrement X by 1 X  [X] – 1
dey Decrement Y by 1 Y  [Y] – 1

Mnemonic Function Operation
inc <opr> Increment memory by 1 M  [M] + 1
inca Increment A by 1 A [A] + 1
incb Increment B by 1 B  [B] + 1
ins Increment SP by 1 SP  [SP] + 1
inx Increment X by 1 X  [X] + 1
iny Increment Y by 1 Y  [Y] + 1



Loop Example 1
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• Write a program to add an array of N  8-bit numbers starting at 
address $1000 and store the 16-bit sum at memory locations 
$1100~$1101. Use a “for i = n1 to n2” looping construct

Start

i  0
sum  0

i= N ?

sum  sum + array[i]

i  i + 1

Stop
yes

no

N: EQU 20
ORG $1000

array: DC.B 1,2,3,4,5,6,7,8,9,10,11,12
DC.B 13,14,15,16,17,18,19,20
ORG $1100

sum: DS.B 2
i: DS.B 1

ORG $4000
clr i ; i=0
clr sum ; sum=0
clr sum+1
ldx #array ; pointer to array



Loop Example 1 (cont.)
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Start

i  0
sum  0

i= N ?

sum  sum + array[i]

i  i + 1

Stop
yes

no

loop: ldaa i ; i
cmpa #N ; is i=N?
beq done
ldab a,x ; array[i]
ldy sum ; sum in Y
aby ; sum=sum+array[i]
sty sum ; update sum
inc i ; increment index
bra loop

done: bgnd ; return to monitor
END



Loop Primitive Instructions
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• These increment/decrement loop counter (stored in register) and 
conditionally branch in one instruction

– Range of branch is 9-bit (-256 to +255)

• cntr can be A, B, D, X, Y or SP,  tar is branch target (label)
example:
dbeq Y, loop1 ; decrement Y and branch to loop1 if Y=0

Mnemonic Function Operation

dbeq cntr, tar Decrement counter and branch if = 0 cntr  [cntr] – 1
if [cntr] = 0 then branch

dbne cntr, tar Decrement counter and branch if ≠ 0 cntr  [cntr] – 1
if [cntr] ≠ 0 then branch

ibeq cntr, tar Increment counter and branch if = 0 cntr  [cntr] + 1
if [cntr] = 0 then branch

ibne cntr, tar Increment counter and branch if ≠ 0 cntr  [cntr] + 1
if [cntr] ≠ 0 then branch

tbeq cntr, tar Test counter and branch if = 0 if [cntr] = 0 then branch
tbne cntr, tar Test counter and branch if ≠ 0 if [cntr] ≠ 0 then branch



Loop Example 2
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• Write a program to find the maximum element from an array of N 
8-bit signed numbers starting at addr. $1000 and store that value 
at memory location $1100. Use a “repeat until C” looping construct.

Start
max  array[0]

i  N – 1
ptr array+1

max < tmp ?

max  tmp

i  i – 1

Stop

no

no
i = 0 ? yes

yes

tmp  *ptr++



Loop Example 2 (cont.)
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N: EQU 20
ORG $1000

array: DC.B 1,-3,5,-6,19,41,-53,28,-13,-42
DC.B 14,20,76,-29,-93,33,41,-8,61,4
ORG $1100

max: DS.B 1

ORG $4000
movb array, max ; init max=array[0]
ldx #array + 1 ; X points to array[1]
ldab #N –1 ; set loop count to N-1

loop: ldaa 1,X + ; load array value and incr pointer
cmpa max ; compare to current max
ble skip ; if <= max then skip update
staa max ; update max=array value

skip: dbne b,loop ; done yet?
here: bra here ; stay here
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