
CPE 390: Microprocessor Systems
Spring 2018

Lecture 7
Assembly Programming: Shift & Logical

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

Bit Condition (Masking) Branch Instructions

brclr (opr), (msk), (tar)
brset (opr), (msk), (tar)

where opr specifies the memory location to be checked

msk is an 8-bit mask that specifies which bits in the
memory location are to be checked. Only check
those that correspond to a ‘1’ in the mask.

tar is branch target (label)
brclr instruction will branch if all selected bits are clear (=‘0’)
brset instruction will branch if all selected bits are set (=‘1’)

for example:
brclr $400, $80, abc ; branch to “abc” if MSbit of [$400] is ‘0’

brset $640, $55, xyz ; branch to “xyz” if all even bits of [$640] are ‘1’
2

Loop Example 3

3

• Write a program to find the number of elements that are divisible by
4 in an array of N unsigned 8-bit elements starting at address $800.

N: EQU 20
ORG $800

array: DC.B 2,3,4,8,12,13,19,24,33,32
DC.B 20,18,53,7,16,82,90,94,100,102
ORG $900

total: DS.B 1

ORG $4000
clr total ;init total to 0
ldx #array ;set X point to array[0]
ldab #N ;set loop count to N

loop: brclr 1, x+, $03, yes ;check bits 1 and 0 & incr pointer
bra skip ;not divisible by 4

yes: inc total ;is divisible by 4
skip: dbne b, loop ;done yet?
here: bra here ;stay here

Shift and Rotate Instructions

4

• Shift and rotate instructions shift the operand right or left by 1 bit
• HCS12 does not support multi-bit shift instructions (barrel shifter)
• Carry bit “catches” bit shifted out to allow multi-precision shifts
• 3 types of shift: logical, arithmetic and rotate

Mnemonic Function Operation
lsl <opr>
lsla
lslb

Logical shift left memory
Logical shift left A
Logical shift left B

lsld Logical shift left D

lsr <opr>
lsra
lsrb

Logical shift right memory
Logical shift right A
Logical shift right B

lsrd Logical shift right D

0
C b7 b0

0
Cb7 b0

• • • 0
C d15 d0

• • •0
Cd15 d0

Arithmetic Shift Instructions

5

• arithmetic shift left is same as logical shift left
• arithmetic shift right preserves sign
• can be used to perform multiply and divide by 2 of signed data

• There is no “arithmetic right shift D” instruction

Mnemonic Function Operation
asl <opr>
asla
aslb

Arithmetic shift left memory
Arithmetic shift left A
Arithmetic shift left B

asld Arithmetic shift left D

asr <opr>
asra
asrb

Arithmetic shift right memory
Arithmetic shift right A
Arithmetic shift right B

0
C b7 b0

Cb7 b0

• • • 0
C d15 d0

Rotate Instructions

6

• rotate bits through the carry
• used to complete multi-precision shifts

• What two-instruction sequence could be used to perform a 16-bit
arithmetic right shift on accumulator D?

Mnemonic Function Operation
rol <opr>
rola
rolb

Rotate left memory thru carry
Rotate left A thru carry
Rotate left B thru carry

ror <opr>
rora
rorb

Rotate right memory thru carry
Rotate right A thru carry
Rotate right B thru carry

C b7 b0

Cb7 b0

Shift Example 1

7

• Write a program to count the number of 0’s in the 16-bit number
stored at $800~$801

ORG $800
numb: DC.W $2355

ORG $900
zeros: DS.B 1
lp_cnt: DS.B 1

ORG $4000
clr zeros ;init zero count to 0
movb #16, lp_cnt ;set up loop count
ldd numb ;place data in D

loop: lsrd ;shift lsb to C
bcs skip ;branch if C is 1
inc zeros ;inc zero count

skip: dec lp_cnt ;increment pointer
bne loop ;done yet?

here: bra here ;wait here when done

Shift Example 2

8

• Write a program to logically shift the 32-bit number stored at
$1000~$1003 to the right 5 places.

ORG $4000
ldab #5 ;set up loop count
ldx #$1000 ;data pointer

sloop: lsr 0, x ;shift MSbyte
ror 1, x ;shift next byte
ror 2, x ;shift next byte
ror 3, x ;shift LSbyte
dbne b, sloop ;done yet?
bgnd

Boolean Logic Instructions

9

• Allows for simple bit manipulations on 8-bit operands
• Important in I/O operations

Mnemonic Function Operation
anda <opr> AND A with memory A  [A] • [M]
andb <opr> AND B with memory B  [B] • [M]
andcc <opr> AND CCR with memory CCR  [CCR] • [M]
eora <opr> XOR A with memory A  [A] ⨁ [M]
eorb <opr> XOR B with memory B  [B] ⨁ [M]
oraa <opr> OR A with memory A  [A] + [M]
orab <opr> OR B with memory B  [B] + [M]
oracc <opr> OR CCR with memory CCR  [CCR] + [M]
clc Clear C bit in CCR C  0
cli Clear I bit in CCR I  0
clv Clear V bit in CCR V  0

Bitwise Logic Operations

10

• All Boolean logic instructions see each operand as a collection of
eight unrelated bits

• for 0 ≤ i ≤ 7, ith bit of first operand is and’d (or’d, xor’d) with ith bit of
second operand to produce ith bit of the result

• For example:

• What would the following instructions do?

ldaa #$53 ; A is 0 1 0 1 0 0 1 1
anda #$E2 ; and’d with 1 1 1 0 0 0 1 0
staa $1000 ; result is 0 1 0 0 0 0 1 0

orab #$FF

oraa #0

anda #$F0

xorb #$FF

Bit Manipulate Instructions

11

• Allow us to set or clear specific bits in a memory location while
leaving the other bits unchanged

• Can only be applied to an 8-bit memory location
• mask is an immediate 8-bit value that specifies which bits to clear

or set (1=clear or set bit, 0=leave bit unchanged)
• For example:

• Try not to confuse with instructions brclr and brset

Mnemonic Function Operation

bclr <opr>, mask Clear bits in memory M [M] • mask

bset <opr>, mask Set bits in memory M  [M] + mask

bclr abc, $3F ; clear all but the two MSbits of location labeled abc
bset 0, Y, $05 ; set bits 0 and 3 of location pointed to by Y

	CPE 390: Microprocessor Systems�Spring 2018
	Bit Condition (Masking) Branch Instructions
	Loop Example 3
	Shift and Rotate Instructions
	Arithmetic Shift Instructions
	Rotate Instructions
	Shift Example 1
	Shift Example 2
	Boolean Logic Instructions
	Bitwise Logic Operations
	Bit Manipulate Instructions

