
CPE 390: Microprocessor Systems
Spring 2018

Lecture 8
Data Structures

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

Data Structures

• A program consists of algorithms plus data structures
– algorithm is sequence of operations required to produce result
– data structures organize data to complement the algorithm
– good data structures improve “transparency” of the code

• Programs we have written to-date have only operated on
very small quantities of data
– need data structures to manage complexity of total data space in a

real application
• We will be examining:

– arrays: index-able set of elements of same type
– strings: sequence of characters terminated by a special character
– stacks: first-in-last-out data structure

2

Arrays
• Arrays are index-able data structures made up of elements of

same type and precision
• Arrays usually consist of a finite, predetermined number of

elements
– first element is often associated with index 0
– e.g. we may want to create an 12 element array A of 16-bit signed

integers. Each element in the array can be represented
(conceptually) as 𝐴𝐴 𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 0 ≤ 𝑖𝑖 ≤ 11

– a one-dimensional array is sometimes called a vector
• A two-dimensional array is an array of 1-D arrays

– e.g. let B be a 6 element array of vectors, where each vector is
itself an 10 element array of 8-bit integers.

– B consists of 60 integers in all. Each element (integer) can be
represented (conceptually) as 𝐵𝐵 𝑖𝑖 𝑗𝑗 where 0 ≤ 𝑖𝑖 ≤ 5, 0 ≤ 𝑗𝑗 ≤ 9

– B[3][6] is an 8-bit integer
– B[3] is an 10 element vector of 8-bit integers
– a matrix is an example of a 2-D array

3

Declaring and Accessing Arrays

• Memory space for an array can be allocated using the DS
and DC assembler directives, e.g:

ABC: DS.B 8
– allocates space for a 1-D array (vector) ABC of 8 elements (in

this case bytes) without initializing the values in the array

ABC: DC.B 13, 3, 4, 28, 19, 59, 100, 6
– allocates space for a 1-D array (vector) ABC of 8 elements (in

this case bytes) and also initializes the elements of the array

• Label ABC is the address of the first element (ABC[0])
• To access the element ABC[5]:

ldx #ABC ;load vector base address into X
ldaa 5, X ;load contents of ABC[5] into A

• What if ABC was an array of 16-bit numbers?
4

Variable Indexing

• What if the index into the array is a run-time variable
• For example, to access the element ABC[k], where k is an

8-bit value stored in memory location $1000:

ldx #ABC ; load vector base address into X
ldab $1000 ; load value k into B
ldaa B, X ; load ABC[k] into A

• What if ABC was an array of 16 or 32-bit integers ?

5

Array Example: Sequential Access

• An array vecx consists of N 16-bit elements. Determine whether
a particular 16-bit key is found in vecx and, if so, the index of its
first occurrence.

6

– Use Y to hold key
– Use B to hold index k
– Use X as pointer to array vecx

Start

k= 0
result = ‘not found’

vecx[k] = key ?

result = k

Stop

yes

no

no

k = N ?

yes

k= k+1

Array Example: Sequential Access (cont.)

N: EQU 15 ; length of array
notfound: EQU $FF ; $FF is code for “not found”
key: EQU 190

ORG $800
result: DS.B 1 ; reserve a byte for result
vecx: DC.W 13,15,320,980,42,86,130,319,430,4,190,20,18,55,30

ORG $1000
clrb ; initialize index
movb #notfound, result ; initialize search result
ldy #key ; key we’re searching for
ldx #vecx ; set up pointer to array

loop: tfr B, A ; copy index to A
lsla ; and multiply by 2 (byte offset)
cpy A, X ; compare key to array element
beq found
incb ; increment index
cmpb #N ; are we at the end of the array?
bne loop ; no - continue
bra done ; yes – key not found

found: stab result ; store index of found key
done: bgnd

7

Array Example: Random (indexed) Access

• An ordered array vecq consists of N unsigned 8-bit elements.
The numbers are stored in increasing order. Use a binary
search to determine whether a particular 8-bit key is found in
vecq and, if so, the index of its occurrence.

Step 1: Initialize variables min and max to 0 and N-1 respectively

Step 2: If max < min then stop. No element matches key

Step 3: Let mean = (min+max)/2

Step 4: If key = vecq[mean], then key is found, exit

Step 5: If key < vecq[mean] set max to (mean-1), go to step 2

Step 6: If key > vecq[mean] set min to (mean+1), go to step 2

8

Array Example: Random (indexed) Access

9

Start

min= 0, max=N-1
result = ‘not found’

max < min ?

Stop

yes

yes

no

vecq[mean] = key?

yes

mean = (min+max)/2

key <vecq[mean]

no

max=mean-1min=mean+1

no

– Use B to hold mean
– Use X as pointer to array vecq
– min, max & result stored in

memory

Random (indexed) Access (cont.)

N: EQU 30 ;length of array
key: EQU 67 ;key we’re searching for
notfound: EQU $FF

ORG $800
min: DS.B 1 ;minimum index value
max: DS.B 1 ;maximum index value
result: DS.B 1 ;reserve a byte for index result
vecq: DC.B 1,3,6,9,11,20,30,45,48,60,61,63,64,65,67

DC.B 69,72,74,76,79,80,83,85,88,90,110,113,114,120,123

ORG $4000
clr min ;initialize min to 0
movb #N-1, max ;initialize max to N-1
movb #notfound, result ;initialize result to ‘not found’
ldx #vecq ;use X as pointer to array

10

Random (indexed) Access (cont.)
loop: ldab min

cmpb max
bhi knf ;if min>max, then key not found
addb max ;compute mean index
lsrb ;B=mean = (min+max)/2
ldaa b,x ;get copy of vecq[mean]
cmpa #key ;compare to key
beq found
bhi lower

upper: incb
stab min ;set min=mean+1
bra loop

lower: decb
stab max ;set max=mean-1
bra loop

found: stab result ;result = current mean (index)
knf: bgnd

END
11

Strings

• A string is a data structure use to hold a sequence of characters
• Each character is represented using its 8-bit ascii code

12

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS DS RS US

2 ! “ # $ % & ‘ () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ^ _
6 ` a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

LS Hex Digit

MS
Hex
Digit

Structure of Strings

• Strings are stored in consecutive memory (byte) locations
– one character per byte

• A string is always terminated by a NULL ($00) character
– strings are set up for sequential access
– NULL character lets us know when we’ve reached the end
– compare to arrays (know the array bounds and can use random access)

• In C, we might say: char str[] = “Hello, world”
– when string is allocated, C compiler automatically adds NULL at end

• In assembly, the NULL must be explicitly added
– e.g: ORG $800

DC.B “Hello, world”,0

13
H e l l o , w o r l d NULL

$48 $65 $6C $6C $6F $2C $77 $6F $72 $6C $64 $00

$800 $801 $802 $803 $804 $805 $806 $807 $808 $809 $80A $80B

$20

$80C

Strings Example:

• Convert an 8-bit unsigned number into its decimal ascii string
suitable for sending to a printer. Suppress leading zeros.

• Solution:
– up to 4 bytes are needed to represent result (including NULL)
– divide by 100, then divide remainder by 10

ORG $5000
data: DC.B 217
out_str: ds.b 4 ; reserve 4 bytes for result

ORG $4000
ldy #out_str ; Y is pointer to output string
ldab data ; number to be converted into D = A:B
clra
ldx #100
idiv ; [D]/[X]  X, remainder D
exg X, D ; Quotient into B

14

Strings Example (cont.)

tstb ; check for zero
beq tens ; suppress leading zero
addb #$30 ; convert remainder to ascii
stab 1,Y+ ; store hundreds digit

tens: tfr X, D ; restore remainder
ldx #10
idiv ; determine tens digit
exg X, D ; quotient into B
tstb ; check for zero
bne skip ; may need to suppress
cmpy #out_str ; was hundreds zero suppressed?
beq units ; suppress leading zero

skip: addb #$30 ; convert to ascii
stab 1,Y+ ; store tens digit

units: tfr X, D ; restore remainder
addb #$30 ; convert remainder to ascii
stab 1,Y+ ; store units digit
clr 0,Y ; terminate with NULL 15

String Append Example:

• Append string2 to the end of string1

ORG $800
string1: DC.B “Happy Birthday ”,0

ORG $900
string2: DC.B “George”,0

ORG $4000
ldx #string1 ; X points to string2
ldy #string2 ; Y points to string1

again: ldaa 1,X+ ; test for NULL & increment pointer
bne again ; reached end yet?
decx ; set pointer back to NULL character

copy_loop: ldaa 1,y+ ; get one character from string1
staa 1,x+ ; add to end of string2
bne copy_loop ; at end of string1 yet?
bgnd

16

Stack

• Stack is a last-in-first-out (LIFO) data structure.
– stack is a dynamic data structure – has a variable size
– stack grows when new elements are added to the top of

the stack
– stack shrinks when existing elements are removed from

top of stack

17

top element

bottom element

low address

high address

push pull
• The processor can add a new item

to the stack by performing a push
operation

• And remove an item from the stack
using a pull (or pop) operation

• The stack is usually placed in a
reserved area of RAM
– usually at a high physical address
– usually grows from high address down

to low address

Stack

18

• We normally draw (think of) the
stack as a data structure that
grows downwards

• Stack pointer (SP) is a special
register that points to the
element on “the top” (lowest
physical address) of the stack

bottom element

top element

high address

low address SP

pushpull

• When data is added (PUSH) or removed (PULL) the SP moves
to reflect this change

• The SP can be used as an index register to access any data
stored on the stack

Stack PUSH

• On HCS12 (and most microprocessors),
stack grows down from high addresses to
lower addresses

• Stack Pointer (SP) usually points to last
element added

• A PUSH (data) operation adds new data
to the stack. It does this by decrementing
the stack pointer and then storing the new
data at the location indexed by the SP

• SP will be decremented by either one or
two depending on whether data is 8-bit or
16-bit 19

item k-2
item k-1
item k

high addr.

low addr.

SP

item k-2
item k-1
item k

item k+1

high addr.

low addr.

SP

Stack PULL

• A PULL operation effectively removes
data from the stack. It does this by
loading data (to a register) from the
memory location currently indexed by
the SP and incrementing the SP

• SP will be incremented by either one or
two depending on whether pull’d data is
8-bit or 16-bit

• After a PULL operation, the pull’d data
will still be in memory but it is effectively
removed from the stack because it is
beyond the current value of the SP 20

item k-2
item k-1
item k

high addr.

low addr.

SP

item k-2
item k-1
item k

high addr.

low addr.

SP

Stack Instructions

21

Mnemonic Function Equivalent Instruction
psha push A onto the stack staa 1, –SP

pshb push B onto the stack staa 1, –SP

pshc push CCR onto the stack none
pshd push D onto the stack std 2, –SP

pshx push X onto the stack stx 2, –SP

pshy push Y onto the stack sty 2, –SP

Mnemonic Function Equivalent Instruction
pula pull A from the stack ldaa 1, SP+

pulb pull B from the stack ldaa 1, SP+

pulc pull CCR from the stack none
puld pull D from the stack ldd 2, SP+

pulx pull X from the stack ldx 2, SP+

puly pull Y from the stack ldy 2, SP+

Stack Implementation

• Stack is used to hold temporary data
• Stack is used to hold return address of subroutine call
• Stack can also be used to hold local variables

– allows for dynamic allocation/release of memory space
– # variables limited only by size of stack allocation region
– stack data can be randomly accessed using SP as an index register

• Limited scope of access provides some data protection

• Stack hazards include:
– overflow: pushing too much data on stack so that SP points to a

location outside stack allocation region
– underflow: pulling more data from the stack than had been previously

pushed on to the stack.

• On Axiom CML-12C32 Development Board (used in lab), the
stack is located in memory block $0E00 - $0E7F 22

Stack Example:

• What will be the contents of the stack after the execution of the
following instructions?

lds #$6000
ldaa #$20
psha
ldab #$40
pshb
ldx #$1234
pula
pshx
pshx
puly

23

Stack as Temporary Storage

• Suppose in the middle of some algorithm, we need to divide data
in D by 100 using idiv (𝑋𝑋 ← 𝐷𝐷 ÷ 𝑋𝑋). But suppose also that we
have some valuable data in register X.
– We need to use register X, but we don’t to lose the data in X.

• We could set up a special named memory location to temporarily
store the data and then retrieve it after the divide:

stx temp_x
ldx #100
idiv
tfr X, D
ldx temp_x

• Alternatively, we could just temporarily store it on the stack
pshx
ldx #100
idiv
tfr X, D
pulx 24

requires us to deliberately allocate a named
space and hold it available throughout the
entire period of program execution

allows us to temporarily allocate space (on
stack) and then release it when no longer
needed – more efficient use of memory space

	CPE 390: Microprocessor Systems�Spring 2018
	Data Structures
	Arrays
	Declaring and Accessing Arrays
	Variable Indexing
	Array Example: Sequential Access
	Array Example: Sequential Access (cont.)
	Array Example: Random (indexed) Access
	Array Example: Random (indexed) Access
	Random (indexed) Access (cont.)
	Random (indexed) Access (cont.)
	Strings
	Structure of Strings
	Strings Example:
	Strings Example (cont.)
	String Append Example:
	Stack
	Stack
	Stack PUSH
	Stack PULL
	Stack Instructions
	Stack Implementation
	Stack Example:
	Stack as Temporary Storage

