CPE 390: Microprocessor Systems
Spring 2018

Lecture 8
Data Structures

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

Data Structures

e A program consists of algorithms plus data structures
— algorithm is sequence of operations required to produce result
— data structures organize data to complement the algorithm
— good data structures improve “transparency” of the code

 Programs we have written to-date have only operated on
very small quantities of data

— need data structures to manage complexity of total data space in a
real application

« We will be examining:

— arrays: index-able set of elements of same type
— strings: sequence of characters terminated by a special character

— stacks: first-in-last-out data structure

Arrays

e Arrays are index-able data structures made up of elements of
same type and precision

e Arrays usually consist of a finite, predetermined number of
elements
— first element is often associated with index O

— e.g. we may want to create an 12 element array A of 16-bit signed
Integers. Each element in the array can be represented
(conceptually) as A[i] where0 <i <11

— aone-dimensional array is sometimes called a vector
« A two-dimensional array is an array of 1-D arrays

— e.g. let B be a 6 element array of vectors, where each vector is
itself an 10 element array of 8-bit integers.

— B consists of 60 integers in all. Each element (integer) can be
represented (conceptually) as B[i][j] where0 <i<50<j<9

— BJ3][6] is an 8-bit integer
— B[3] is an 10 element vector of 8-bit integers
— a matrix is an example of a 2-D array

Declaring and Accessing Arrays

« Memory space for an array can be allocated using the DS
and DC assembler directives, e.q:

ABC: DS.B 8

— allocates space for a 1-D array (vector) ABC of 8 elements (in
this case bytes) without initializing the values in the array

ABC: DC.B 13, 3,4, 28, 19, 59, 100, 6

— allocates space for a 1-D array (vector) ABC of 8 elements (in
this case bytes) and also initializes the elements of the array

« Label ABC is the address of the first element (ABCJ0])

e To access the element ABCI[5]:
ldx #ABC ;load vector base address into X
ldaa 5 X ;load contents of ABCJ[5] into A

 What if ABC was an array of 16-bit numbers?

Variable Indexing

 What if the index into the array is a run-time variable

 For example, to access the element ABC[k], where k is an
8-bit value stored in memory location $1000:

Idx #ABC : load vector base address into X
Idab $1000 : load value k into B
ldaa B, X ;load ABCI|k] into A

 What if ABC was an array of 16 or 32-bit integers ?

Array Example: Sequential Access

 An array vecx consists of N 16-bit elements. Determine whether
a particular 16-bit key is found in vecx and, if so, the index of its
first occurrence.

— Use Y to hold key
C Start)
— Use B to hold index k
k=0 — Use X as pointer to array vecx
result = ‘not found’

result = k

Array Example: Sequential Access (cont.)

N: EQU 15 ; length of array

notfound: EQU $FF : $FF is code for “not found”

key: EQU 190
ORG $800

result: DS.B 1 ; reserve a byte for result

VECX: DC.W 13,15,320,980,42,86,130,319,430,4,190,20,18,55,30
ORG $1000
clrb ; initialize index
movb #notfound, result ; Initialize search result
ldy #key ; key we’re searching for
ldx #vecx ; set up pointer to array

loop: tfr B, A ; copy index to A
Isla ; and multiply by 2 (byte offset)
cpy A, X ; compare key to array element
beq found
Inch ; Increment index
cmpb #N ; are we at the end of the array?
bne loop ; NO - continue
bra done ; yes — key not found

found: stab result ; store index of found key 7

done: bgnd

Array Example: Random (indexed) Access

e An ordered array vecd consists of N unsigned 8-bit elements.
The numbers are stored in increasing order. Use a binary
search to determine whether a particular 8-bit key is found in
vecq and, if so, the index of its occurrence.

Step 1: Initialize variables min and max to 0 and N-1 respectively
Step 2: If max < min then stop. No element matches key

Step 3: Let mean = (min+max)/2

Step 4: If key = vecg[mean], then key is found, exit

Step 5: If key < vecg[mean] set max to (mean-1), go to step 2

Step 6: If key > vecg[mean] set min to (mean+1), go to step 2

Array Example: Random (indexed) Access

— Use B to hold mean

(Start) — Use X as pointer to array vecq
: — min, max & result stored in
min= 0, max=N-1
result = ‘not found’ memory

) yes
max < min ? >

no

mean = (min+max)/2 @@

min=mean+1

max=mean-1

Random (indexed) Access (cont.)

N: EQU 30 ;length of array
key: EQU 67 ;key we’re searching for
notfound: EQU $FF
ORG $800
min: DS.B 1 ‘minimum index value
max: DS.B 1 ‘maximum index value
result: DS.B 1 ;reserve a byte for index result
vecd: DC.B 1,3,6,9,11,20,30,45,48,60,61,63,64,65,67
DC.B 69,72,74,76,79,80,83,85,88,90,110,113,114,120,123
ORG $4000
clr min ‘Initialize min to O
movb #N-1, max ‘Initialize max to N-1
movb #notfound, result :Initialize result to ‘not found’

ldx #vecq ;use X as pointer to array

10

Random (indexed) Access (cont.)

loop: Idab min
cmpb max
bhi knf ;If min>max, then key not found
addb max ;compute mean index
Isrb ;B=mean = (min+max)/2
Idaa b,X ;get copy of vecq[mean]
cmpa #key ;compare to key
beq found
bhi lower
upper: inch
stab min ;set min=mean+1
bra loop
lower: dechb
stab max ;set max=mean-1
bra loop
found: stab result ;result = current mean (index)
knf: bgnd

END
11

Strings

e A string is a data structure use to hold a sequence of characters
 Each character is represented using its 8-bit ascii code

LS Hex Digit
o|1(2|3|4|5|6|7|8|9|A|B|C|D|E]|F
O [NUL|SOH|STX|ETX|EOTIENQ|ACK|BEL|{BS |HT | LF | VT | FF |[CR | SO | SI
1 |DLE|DC1|DC2|DC3|DC4|NAK|SYNIETB|CAN| EM [SUBIESC| FS | DS | RS | US
2 Ll " # S| % | & | () [>+, |- /
MS
Hex 310112 |3|4|5]|6]|7|8]09 <= > 7
Digit 4 @|A|B|C|D|E|F|G|H| I |J|K]|L|M O
5| PIQ|IR|S|T|U|VIW[X|Y|Z[T[|V\N]]!|"™]_
6 a|lblc|d|je|f|lg|h|iT]|]]]|k]l|{m|njo
7|plg|lr|s|tjulviw|x]|yl|lz]|{]|]I|]|} |~ |PEL

12

Structure of Strings

e Strings are stored in consecutive memory (byte) locations
— one character per byte

e A string is always terminated by a NULL ($00) character
— strings are set up for sequential access
— NULL character lets us know when we’ve reached the end
— compare to arrays (know the array bounds and can use random access)

e In C, we might say: char str[] = “Hello, world”
— when string is allocated, C compiler automatically adds NULL at end

* |n assembly, the NULL must be explicitly added
— e.0: ORG $800
DC.B *“Hello, world”,0

$800 $801 $802 $803 $804 $805 $806 $807 $808 $809 $80A $80B $80C

$48

$65

$6C

$6C

$6F

$2C

$20

$77

$6F

$72

$6C

$64

$00

H

e

o

w

o

r

d

NULL
13

Strings Example:

« Convert an 8-bit unsigned number into its decimal ascii string
suitable for sending to a printer. Suppress leading zeros.

e Solution:

— up to 4 bytes are needed to represent result (including NULL)
— divide by 100, then divide remainder by 10

ORG $5000
data: DC.B 217
out str: ds.b 4 ; reserve 4 bytes for result
ORG $4000
Idy #out_str ; 'Y IS pointer to output string
Idab data ; number to be converted into D = A:B
clra
ldx #100
idiv ; [D]/[X] = X, remainder D

exg X, D ; Quotient into B
14

Strings Example (cont.)

tstb ; check for zero
beq tens ; suppress leading zero
addb #$30 ; convert remainder to ascii
stab 1,Y+ ; store hundreds digit
tens: tfr X,D ; restore remainder
ldx #10
idiv ; determine tens digit
exg X,D , quotient into B
tstb ; check for zero
bne skip ; may need to suppress
cmpy #out_str ; was hundreds zero suppressed?
beq units ; suppress leading zero
skip: addb #$30 ; convert to ascii
stab 1,Y+ ; store tens digit
units: tfr X, D ; restore remainder
addb #$30 ; convert remainder to ascii
stab 1,Y+ ; store units digit

clr 0,Y ' terminate with NULL 15

String Append Example:

e Append string2 to the end of stringl

ORG $800
stringl.: DC.B “Happy Birthday ”,0
ORG $900
string2: DC.B “George”,0
ORG $4000
ldx #stringl ; X points to string2
Idy #string2 ; 'Y points to stringl
again: Idaa 1,X+ ; test for NULL & increment pointer
bne again ; reached end yet?
decx ; set pointer back to NULL character
copy_loop: Idaa 1,y+ ; get one character from stringl
staa 1,x+ ; add to end of string2
bne copy_loop ; at end of stringl yet?
bgnd

16

Stack

o Stack is a last-in-first-out (LIFO) data structure.
— stack is a dynamic data structure — has a variable size

— stack grows when new elements are added to the top of
the stack

— stack shrinks when existing elements are removed from
top of stack

e The processor can add a new item
push l ' pull to the stack by performing a push
operation

 And remove an item from the stack
using a pull (or pop) operation

low address top element

 The stack is usually placed in a
reserved area of RAM

high address | bottom element — usually at a high physical address

— usually grows from high address down
to low address 17

Stack

 We normally draw (think of) the high address [bottom element
stack as a data structure that N
grows downwards °
(0]
(0]
« Stack pointer (SP) is a special °
register that points to the low address | top element [¢— SP
element on “the top” (lowest
physical address) of the stack l '
pull push

 When data is added (PUSH) or removed (PULL) the SP moves
to reflect this change

« The SP can be used as an index register to access any data
stored on the stack

18

Stack PUSH

On HCS12 (and most microprocessors),
stack grows down from high addresses to
lower addresses

Stack Pointer (SP) usually points to last
element added

A PUSH (data) operation adds new data
to the stack. It does this by decrementing
the stack pointer and then storing the new
data at the location indexed by the SP

SP will be decremented by either one or
two depending on whether data is 8-bit or
16-bit

SP B

SP mp

item k-2

item k-1

item k

item k-2

item k-1

item k

item k+1

high addr.

low addr.

high addr.

low addr.

19

Stack PULL

item k-2 high addr.
item k-1
sP Bp| itemk

A PULL operation effectively removes
data from the stack. It does this by
loading data (to a register) from the
memory location currently indexed by
the SP and incrementing the SP

low addr.

item k-2 high addr.

o SP will be iqcremented by either one or spm)| item k-1
two depending on whether pull'd data is :
8-bit or 16-bit tem k

» After a PULL operation, the pull’d data
will still be in memory but it is effectively low addr.
removed from the stack because it is
beyond the current value of the SP 20

Stack Instructions

Mnemonic Function Equivalent Instruction

psha push A onto the stack staa 1,-SP

pshb push B onto the stack staa 1,-SP

pshc push CCR onto the stack none

pshd push D onto the stack std 2,-SP

pshx push X onto the stack stx 2,-SP

pshy push Y onto the stack sty 2,-SP

Mnemonic Function Equivalent Instruction
pula pull A from the stack Idaa 1, SP+
pulb pull B from the stack Idaa 1, SP+
pulc pull CCR from the stack none
puld pull D from the stack ldd 2, SP+
pulx pull X from the stack ldx 2, SP+
puly pull Y from the stack Idy 2, SP+ 21

Stack Implementation

o Stack is used to hold temporary data
o Stack is used to hold return address of subroutine call
o Stack can also be used to hold local variables

— allows for dynamic allocation/release of memory space

— # variables limited only by size of stack allocation region
— stack data can be randomly accessed using SP as an index register

e Limited scope of access provides some data protection

e Stack hazards include:

— overflow: pushing too much data on stack so that SP points to a
location outside stack allocation region

— underflow: pulling more data from the stack than had been previously
pushed on to the stack.

« On Axiom CML-12C32 Development Board (used in lab), the
stack is located in memory block $0EQO - $0E7F 22

Stack Example:

« What will be the contents of the stack after the execution of the
following instructions?

lds #$6000
ldaa #$20
psha

ldab #$40
pshb

|dx #$1234
pula

pshx

pshx

puly

23

Stack as Temporary Storage

e Suppose in the middle of some algorithm, we need to divide data

In D by 100 using idiv (X < [D] = [X]). But suppose also that we
have some valuable data in register X.
— We need to use register X, but we don’t to lose the data in X.

 We could set up a special named memory location to temporarily
store the data and then retrieve it after the divide:

Stx temp_X
ldx #100 requires us to deliberately allocate a named
idiv space and hold it available throughout the
tfr X, D entire period of program execution
ldx temp_X
« Alternatively, we could just temporarily store it on the stack
pshx
ldx #100 allows us to temporarily allocate space (on
idiv stack) and then release it when no longer
tfr X, D needed — more efficient use of memory space

pulx 24

	CPE 390: Microprocessor Systems�Spring 2018
	Data Structures
	Arrays
	Declaring and Accessing Arrays
	Variable Indexing
	Array Example: Sequential Access
	Array Example: Sequential Access (cont.)
	Array Example: Random (indexed) Access
	Array Example: Random (indexed) Access
	Random (indexed) Access (cont.)
	Random (indexed) Access (cont.)
	Strings
	Structure of Strings
	Strings Example:
	Strings Example (cont.)
	String Append Example:
	Stack
	Stack
	Stack PUSH
	Stack PULL
	Stack Instructions
	Stack Implementation
	Stack Example:
	Stack as Temporary Storage

