
CPE 390: Microprocessor Systems
Spring 2018

Lecture 9
Subroutines

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

Structured Programming

• When developing a large, complex program, desirable to
hierarchically partition code into small functions that have:
– single entry point
– well defined interface (input parameters, results)
– well defined, consistent functionality
– minimal side effects
– especially important in assembly language programming

• Well structured programming makes the code
– easy to read & document
– easy to verify and debug
– easy to maintain

• In assembly language, we hierarchically partition the code
into small functions using subroutine call

2

Subroutine
• A subroutine is a sequence of instructions that can be called

from many places in a program
– allows same operation to be performed on different parameters

• When a subroutine is called, the processor saves the return
address (address of next instruction after the call)

• When a subroutine has completed it uses this return address to
resume execution of the calling code

3

start: • ; start of main program
•

jsr subroutine_x
•

end: • ; end of main program
•
•

subroutine_x: • ; start of subroutine
•
•

return ; end of subroutine

Subroutine Instructions

• There are a number of instructions that support subroutine
call and return. We will consider only two:

• Note that a main program must set up the stack (set the SP
to suitable memory address) before calling a subroutine 4

Mnemonic Function Description

jsr <sub> jump to subroutine

Address of subroutine <sub> can be
specified using extended, indexed or indexed
indirect mode - anywhere in 64kB address
space.

But it is usually specified using a label.

The return address (i.e. address of next
sequential instruction after the subroutine
call) is automatically PUSH’d on to the stack

rts return from
subroutine

PULL’s return address from stack and loads it
into PC.

Calling program resumes at the return
address.

Subroutine Example:

5

• Write a subroutine that determines the length of a string (in
bytes), not including the NULL termination. A pointer to the
string is passed (to the subroutine) in register X and the string
length is returned (to the main program) in accumulator A

strlen: clra ;initialize character count to 0
slp: tst 1,x+ ;test for NULL

beq done
inca ;increment count
bra slp

done: rts ;return to caller

• Subroutine can be called as follows:
lds #$5000 ; set up stack (once at beginning of program)

•
•

ldx #test_string ;load parameter into X
jsr strlen ;execute subroutine
staa length ;subroutine returns here

Subroutine Data Issues

6

• jsr and rts instructions deal with program flow and ensure we
return correctly to calling program.

• Programmer must also deal with:

– passing parameters to subroutine
• string pointer in X in previous example

– retrieving results from subroutine
• character count in A in previous example

– allocating local data storage space for subroutine operations
• not required in previous example

– saving data stored in registers used by subroutine
• not required in previous example

Subroutine Issues: Parameters & Results

7

• Parameter Passing:
– Use registers: Convenient when there are only a few parameters to

be passed
– Use global memory: Accessible to both caller and callee. Good

structured programming practice limits passing of global variables.
Limits ability to make subroutines re-entrant.

– Use stack: Parameters are pushed on to stack before subroutine is
called. Stack must be cleaned up after subroutine has executed.

• Result Returning:
– Use registers: Convenient when only a few bytes to be returned
– Use global memory: Accessible to both caller and callee. Same

concern about use of global variables
– Use stack: Caller allocates space on stack before making

subroutine call
– Use pointer parameters: Caller passes pointer to variables that

need to be modified by the subroutine

Subroutine Issues: Parameters & Results

8

• When a program “calls” a subroutine, the caller and the
subroutine must agree on how parameters will be passed to
the subroutine and how results will be returned to the caller

• We sometimes say that there is a “contract” between the
calling program and the subroutine which defines how
parameters and results will be passed.

Subroutine Issues: Saving Registers

9

• Subroutine may use some CPU registers that are being used by
caller

• Best practice is to make no assumptions about which registers
are being used by caller
– makes subroutine useful in broader arrays of apps.

sub: pshd
pshx
pshy
•
•

puly
pulx
puld
rts

• All registers used by subroutine (except
those used for passing parameters or results)
should be saved to stack
– registers must be restored before returning to

caller
– registers are pulled off stack in reverse order
– For example if a subroutine uses D, X and Y:

Saving Registers on Stack

10

sub: pshd
pshx
pshy
•
•

puly
pulx
puld
rts

return address

SP during
subroutine
execution

saved [X]
saved [Y]

saved [D]

SP before
subroutine call

Subroutine Issues: Local Variables

11

• Subroutine may need local variables to complete operation
– beyond that provided by register storage

• Not wise to use global variables
– local variables should be limited in scope to subroutine
– not available to caller once subroutine has returned

• Local variables should be allocated on stack
• leas instruction can be used to allocate and de-allocate

space on stack, e.g:

leas -10,sp ;SP  [SP] – 10
• ;effectively allocates10 bytes to top of stack
•

leas 10,sp ;SP  [SP] + 10
;de-allocates 10 bytes from top of stack

Local variables on Stack

• Note that during the execution of the subroutine, the SP
can be used as an index register to access local variables

12

sub: pshd
pshx
pshy
leas -10, SP
•
•

leas 10, SP
puly
pulx
puld
rts

return address

SP during
subroutine
execution

saved [X]
saved [Y]

saved [D]

SP before
subroutine call

10 bytes for
local

variables

Stack Frame

• Stack is used heavily in subroutine calls
• Stack may hold parameters, return address, saved

registers and local variables
• Stack frame for a subroutine is sometimes called

activation record
• All parameters and variables can be accessed within the

subroutine using SP as an index register

13

Local
variables

Saved registers
Return address

Incoming
parameters

SP

Caller’s
stack frame

Subroutine’s
stack frame

Stack Frame Example

• Draw the stack frame for the following program segment
after the leas instruction is executed:

14

return address

$1234

SP

ldd #$1234 ;param1
pshd
ldd #$4000 ;param2
pshd
jsr sub_xyz
…
…

sub_xyz: pshd ;save regs
pshx
pshy
leas –10,sp ;space for
… ;local variables

$4000

[X]
[Y]

10 bytes for
local

variables

$4000

old
SP

Stack History

• The stack tells a story of the history of subroutine calls that got
us to the current state of the program

• Suppose main program calls subroutine ABC. Subroutine ABC
then calls subroutine JKL which, in turn calls subroutine XYZ

• While XYZ is running, stack will look like:

15

JKL stack frame

ABC stack frame

Main program
stack frame

SP
XYZ stack frame

In a large program in which there is
a complex hierarchy of subroutine
calls, the stack will advance
(downwards) and retreat (upwards)
as subroutines are called (and
returned)

Example: Subroutine with saved registers

Write a subroutine that counts the number of negative values in
an array of 8-bit signed integers. A pointer to the array is
passed in Y. The number of elements in the array is passed in
B. The answer should be returned in B (overwriting the total
number of elements). Save any registers used (other then Y
and B).

Solution: Use Y as a data pointer, B as a loop counter and
accumulate count of negative values in A. Will need to save
accumulator A

16

return address
SP [A]

Stack Frame:

Counting Negative Values Example (cont.)

17

cnt_neg: psha ; save A accumulator
clra ; set count = 0

nloop: tst 1, Y+ ; test sign of data
bpl skip ; if positive do nothing
inca ; increment count

skip: dbne B, nloop ; done yet?
tfr A, B ; yes, place result in B
pula ; restore A accumulator
rts

Counting Negative Values Example (cont.)

18

ORG $1000
array: dc.b 4, 15, -87, 44, -3, -29, 33, 104
result: ds.b 1

ORG $4000
lds #$5000 ; set up stack pointer
ldy #array ; set Y to point to array
ldab #8 ; no. of array elements in B
jsr cnt_neg ; call subroutine to count neg values
stab result ; result in B
bgnd

• To use this subroutine:

Example: Subroutine with local variables

Write a subroutine that converts a decimal ascii string to a 16-
bit signed binary number and leaves result in D. A pointer to the
string is passed in X. If error (non-decimal digit) is detected, set
X=0. Save any registers used (other then X and D).

Solution: Use local variables sign, number and temp

Step1: initialize sign=number=0
Step2: if m[ptr] is ‘–’, then sign=1, increment ptr
Step3: if m[ptr] is NULL, go to step 4

else if m[ptr] is not decimal digit (0-9) then set X=0 and return
else number = number X 10 + (m[ptr] - $30)
increment ptr, go to step 3

Step4: if sign=1, number = twos complement (number)
set D=number and return

19

Ascii to Binary Example (cont.)

• First define stack frame:

20

minus: equ $2D
temp: equ 0 ;stack offset of temp
val: equ 2 ;stack offset of val
sign equ 4 ;stack offset of sign

temp

return address

SP

[Y]

val
5 bytes

sign

Ascii to Binary Example (cont.)

21

dec2bin: pshy ;save Y register
leas –5, SP ;allocate 5 bytes for local storage
movw #0, val, SP ;initialize value to 0
clr sign, SP ;initialize sign to 0
ldaa 0, X ;get first character
cmpa #minus ;is first character a ‘–’ sign?
bne dloop
inc sign, SP ;set sign=1
inx ;update pointer

dloop: ldab 1, X+ ;is next character a NULL?
lbeq done ;we are at end of string
cmpb #$30 ;is character less than ascii 0?
blo cherr
cmpb #$39 ;is character greater than ascii 9?
bhi cherr
subb #$30 ;convert digit to binary
clra ;set A=0 to make 16-bit quantity
std temp, SP ;temporarily store 16-bit value of this digit

Ascii to Binary Example (cont.)

22

ldd val, SP ; current accumulated value
ldy #10
emul ; Y:D = [Y] x [D] (16x16 mult)
addd temp, SP ; add current digit value
std val, SP ; save the new value
bra dloop ; move on to next digit

cherr: ldx #0 ; set the error condition
bra dealloc

done: ldd val, SP ; put result in D
tst sign, SP ; check sign intended sign of result
beq dealloc ; if number is positive, we’re done
ldd #0 ; if number is negative…
subd val, SP ; form twos complement in D

dealloc: leas 6, SP ;de-allocate local variables
puly ;restore Y register
rts ;return to caller

Ascii to Binary Example (cont.)

• To use this subroutine:

23

ORG $800
dec_str: dc.b “–4723”,0
result: ds.w 1

ORG $4000
lds #$6000
ldx #dec_str
jsr dec2bin
std result
bgnd

Subroutine to return mean

• Write a subroutine to return the mean (average) of two 16-bit
signed quantities. The two parameters are passed to the
subroutine by loading their value on the stack immediately prior
to the subroutine call. The result should be placed in register X.
Save and restore any registers used by the subroutine.

• A calling sequence may look like:

24

ldx valA
pshx
ldx valB
pshx
jsr average
stx mean

Programmed Delay

• Sometimes we may want the microprocessor to wait for a
specified period of time before executing next operation.

• Many HCS12 instructions execute in a predetermined
number of clock cycles
– i.e. for a given clock frequency take a known fixed time to execute

• We measure instruction execution time in terms of bus
clock (E-clock) cycles
– bus frequency is half that of PLL clock

• Create a known time delay in two steps:
1. Select a sequence of instructions that takes known time to execute
2. Repeat instruction sequence a number of times to generate

required delay
• For example, sequence on following slide takes 40 E-

cycles to execute
25

40 E-cycle delay loop

• psha and pula are stack
instructions

• Lab. EVB has E-Clock = 8 MHz,
each E-clock period is 125 ns.

• Each iteration through loop
takes 5 µs

• By entering loop with X
initialized to 20,00010, we create
a delay of 100 ms.

• Longer delays can be created
by nesting this loop within a
second (outer) loop that repeats
the 100 ms sequence a
specified number of times

26

tloop: psha ;2 E-cycles
pula ;3 E-cycles
psha
pula
psha
pula
psha
pula
psha
pula
psha
pula
psha
pula
nop ;1 E-cycle
nop ;1 E-cycle
dbne x, tloop ;3 E-cycles

Example: Time Delay Subroutine

• This routine delays by a multiple of 100 ms (assuming a 8 MHz
E-clock).

• The multiple is passed as a parameter in register Y. xloop is the
“inner” 100ms timing loop. yloop is the outer parameterized loop.

27

delayby100ms:
pshx ; save X

yloop: ldx #20000 ;2 E-cycles
xloop: psha ;2 E-cycles

pula ;3 E-cycles
psha
pula
psha
pula
psha
pula

psha
pula
psha
pula
psha
pula
nop ;1 E-cycles
nop ;1 E-cycles
dbne x, xloop ;3 E-cycles
dbne y, yloop ;3 E-cycles
pulx ;restore X
rts

	CPE 390: Microprocessor Systems�Spring 2018
	Structured Programming
	Subroutine
	Subroutine Instructions
	Subroutine Example:
	Subroutine Data Issues
	Subroutine Issues: Parameters & Results
	Subroutine Issues: Parameters & Results
	Subroutine Issues: Saving Registers
	Saving Registers on Stack
	Subroutine Issues: Local Variables
	Local variables on Stack
	Stack Frame
	Stack Frame Example
	Stack History
	Example: Subroutine with saved registers
	Counting Negative Values Example (cont.)
	Counting Negative Values Example (cont.)
	Example: Subroutine with local variables
	Ascii to Binary Example (cont.)
	Ascii to Binary Example (cont.)
	Ascii to Binary Example (cont.)
	Ascii to Binary Example (cont.)
	Subroutine to return mean
	Programmed Delay
	40 E-cycle delay loop
	Example: Time Delay Subroutine

