
1

Getting Started with the HCS12 IDE
B. Ackland

June 2015

This document provides basic instructions for installing and using the MiniIDE Integrated
Development Environment and the Java based HCS12 simulator. These two programs will allow
you to enter a program in HCS12 assembly language, assemble your code into a S19 machine
code file, load the machine code into the instruction level simulator and simulate the execution of
your code. The MiniIDE is also used as the front-end for your lab work. Code assembled by this
program can be downloaded to the lab EVB boards for execution on a real HCS12 processor as
part of your lab work. The following instructions assume you are installing the software in a
Microsoft Windows environment.

1. Installing MiniIDE
Download the file HCS12_IDE.zip by clicking on the HCS12_IDE link on the course website.
Extract the contents of the zip file. Move the extracted HCS12_IDE files to a convenient place in
your file system. Execute the installation file miniide.msi. Choose the Typical setup type. This
will install the MiniIDE software on your machine.

Create a new folder HCScode (or any other name you would like to give it) in a convenient
place in your file system. This will be your working directory (folder) in which you will write
and assemble code for the HCS12. Copy the four files equates.asm, dbug12.asm, dbug12.lst and
DBUG12.S19 from the HCS12_IDE folder to your HCScode folder.

2. Installing 68HCS12 Simulator
Return to the HCS12_IDE folder. The simulator simhc12.jar is provided as a Java executable.
Move the file simhc12.jar to your desktop or some other convenient place for execution. Note
that in order for this program to execute, you will need to have Java running on your PC. If you
do not currently have a version of Java on your machine, you can load Java by going to
www.java.com/download where you can get a free download of the latest version of Java. Once
you have Java installed, the file simhc12.jar will display a Java icon. If you double-click on it, a
pop-up simulator window will appear (as shown in Figure 2).

3. Using the MiniIDE
Launch the MiniIDE from the START menu of your PC. When first started, the MiniIDE appears
as shown in Figure 1. The top half of the window is the area in which you will edit and view
your assembly code. Below this area you may see up to two small sub-windows. The upper one
is used for diagnostic output from the assembler. The lower window provides output for a
terminal emulator when used with an evaluation board. This is the window you will use in your
lab sessions to communicate with the EVB. If you do not have an assembler output sub-window
showing, click on Windows in the View pull-down menu and turn on the Output window.

3.1 Entering your program
Click New on the File pull-down menu. This will load a “blank sheet” into the main window
with an active cursor ready to receive your code.

2

Figure 1. MiniIDE on startup

Enter the code shown on the following page:

3

 ORG $5000
Adata: dc.b $23 ; byte initialized to 23 (hex)
Bdata: dc.b $5A ; byte initialized to 5A (hex)
Rdata: ds.b 1 ; one byte set aside to receive result

 ORG $4000
Start: ldaa Adata ; load A with contents of A data

 ldx #Bdata ; load X with address of Bdata
 ldy #Rdata ; load Y with address of Rdata
 adda 0,X ; add data pointed to by X to acc A
 suba #10 ; subtract 10 (decimal) from result
 staa 2, Y+ ; store final result
 swi
 END

This is a simple program to exercise the assembler and simulator. It adds the two numbers
stored in memory locations Adata and Bdata, subtracts 10 (decimal) from the result and then
stores the answer in memory location Rdata. The SWI instruction causes a software interrupt
which will stop execution when running on the simulator. Use the Save As command on the
File pull-down menu to save your program as simple.asm in your working folder HCScode.
Make sure you understand what this code is supposed to do. What do you expect the values
of accumulator A, registers X and Y and memory location Rdata to be once this program has
executed?

3.2 Assembling your program
Click Build simple.asm on the Build pull-down menu. This will run the assembler on your
program. The assembler will print out a diagnostic message in the assembler output sub-
window indicating how many errors were found. If there are errors, you may have mistyped
when entering the code. Scroll up on the output window to see the details of the error(s) and
correct them. If you do not have any errors, you may want to deliberately introduce one just
to see how the assembler responds. Once you have corrected any errors, save the file and run
the assembler once again to produce an error-free output.

In addition to the diagnostic output message, the assembler produces two new files in your
working folder. The first will be simple.S19. This is a text file that contains the machine code
(in a special format) that will be loaded into the simulator or into the physical microprocessor
on the EVB board. The second is a listing file that will be named simple.lst. Open this file in
MiniIDE using the Open command on the File pull-down menu. Set the Files of Type pull-
down field in the Open pop-pup menu to Listing Files (*.lst). Select simple.lst and click
Open.

The listing file shows your program text together with the address and machine codes of each
instruction in your program. Each line consists of:

4

(a) The line number for your original code. This is very useful if trying to locate an
assembler error (identified by line number) in a large program.

(b) The memory address of the first byte of this instruction

(c) The instruction opcode (1-2 bytes)

(d) The instruction operand address bytes (0-5 bytes)

(e) The original assembler line of code

The listing file also shows any memory locations (along with their labels) that have been
initialized with data (Adata and Bdata in this case) or set aside to hold variables during
execution (Rdata in this example). At the bottom of the file is a summary of all the labels that
were defined as part of the assembly process. Again, this is useful in a large (multi-page)
program where it might be difficult to visually locate a label.

The listing file can be very useful in debugging a program. Knowing the memory address of
each instruction and the actual machine code data can help identify where in the instruction
sequence something is going wrong.

4. Using the Simulator
Launch the simulator Simhc12.jar from the desktop (or wherever you stored it). The simulator
control panel appears in window as shown in Figure 2.

On the left of the window are fields showing the values of accumulators A, B and D and registers
X, Y, PC and SP. You can change the contents of any register by simply typing into these fields.
The D register is changed by writing to A and B (the upper and lower bytes of D). To the right of
the registers are the 8-bits of the condition code register. A tick indicates that a bit is set to ‘1’.
The absence of a tick indicates this bit is set to ‘0’. These bits can be toggled by simply clicking
the box.

At the bottom of the window is a Memory Display area when you can display and modify the
contents of memory locations. Memory is displayed four lines at a time. Each line corresponds to
16 memory addresses. The first line starts at the address specified using the Address field and the
Show button at the top of the memory display area. Each line shows the contents of each of its
16 8-bit memory locations as a 2-digit hex number. It also displays (on the right side of the
window) the line as a string of 16 ascii characters. If the value in a particular memory location
does not represent a printable ascii character, it is simply shown as a blank space.

Individual memory locations can be changed by clicking on the current hex data in the memory
display window. A red cursor will appear. Simply type in the new hex character (0-F) and this
will overwrite the old value. The cursor will then move on to the next memory location. You can
explore a larger region of memory using the scroll buttons on the right of the memory display
area.

The three fields at the very bottom of the window allow you to fill a section of memory with the
same constant value. Simply set up the Start and End address along with the data Value you want
entered and click the Fill button.

5

4.1 Loading and executing DBUG12
Click Load on the File pull-down menu. Browse to your HCScode folder and select
DBUG12.S19. This will load the program DBUG12 into the simulator. This program is used
to set up the interrupt vector table, set the stack pointer, initialize the clock simulator and set
up the serial interface. It is not required to run simple programs, but it is a good idea to
include it routinely with all user programs as it allows the simulator to be better behaved
when unexpected conditions occur.

Click Reset on the File pull-down menu. This is equivalent to pulsing the reset pin on the
microprocessor. Note that this sets the PC to point to the address of the first instruction of the
DBUG12 code (FF02). Now click the GO button. This will run the DBUG12 code. When
done, this program uses a BGND instruction to return control to the user. A pop-up window
appears. Click OK. Note that the next instruction is a jump to location $4000, the address at
which we normally place the start of user code.

4.2 Loading your program
Click Load on the File pull-down menu. Browse to your HCScode folder and select
simple.S19. This will load the machine code of your program into the simulator.

Figure 2. Simulator on startup

6

Click Code Viewer on the View pull-down menu. A pop-up Code Viewer window appears.
Enter 4000 into the address field and click Set Start. The window will display your program
correctly loaded at memory location $4000, decompiled back into assembly code. Note that
the simulator does not know about the labels used in your original code, so all addresses are
now numerical. Close the Code Viewer window.

Now enter 5000 into the Address field of the Memory Display window and click Show. You
can now see the values 23 and 5A that you loaded into memory locations Adata and Bdata.
Note that Rdata (location $5002) is initially set to 00.

4.3 Executing your program
There are two ways you might execute your loaded program:

(a) Check that the PC still contains the value $F02A and that the Next Instruction field
shows a jump to memory address $4000. If that is the case, simply clock GO. This
will execute the jump to $4000 which will start your program.

(b) Alternatively, load $4000 into the program counter and click GO. This is the
preferred technique as it can be used to re-start your code at any time, and does not
rely on you just having run DBUG12.

Your program will run until it reaches the SWI instruction, at which point it will generate a
HALT pop-up window. Click OK. Use the Memory Display window to examine the contents
of Rdata. Does it contain the correct result? What about the contents of A, X and Y. Are they
what you predicted back in Section 3.1? Unfortunately, you will see that the SWI handler in
DBUG12 overwrites the data in the X and Y registers.

 If you want to re-run the program and see the correct values of X and Y at the end of the
program, replace the SWI instruction with a BGND instruction. You can do this by editing
the original assembly program, re-assembling and reloading your machine code into the
simulator. Or for a quick fix, you could change the machine code. Use the Memory Display
window to change memory location $400F from $3F (the opcode for SWI) to $00 (the
opcode for BGND). Set the program counter back to $4000 and rerun the program. Now
when the program halts, you should see the correct values in the X and Y registers.

4.4 Single-stepping your program
The simulator provides the facility to single step your program, that is execute your program
one instruction at a time, observing the contents of the registers and memory after each
individual instruction execution. Load the program counter with $4000. Now click the STEP
button. The simulator now executes just one instruction – the first instruction in your
program (start: ldaa Adata). Note that accumulator A now contains $23. The PC is now set
equal to the address of the second instruction $4003. The instruction at $4003 is shown in the
Next Instruction window. Click STEP again. Note that the X register now contains the value
$5001, the address of Bdata. The program counter has advanced to point to the third
instruction. Continue clicking the STEP button, following the data changes to the registers
and memory as each instruction is executed until you reach the end of the program.

The number of instructions executed at each step is specified by the number in the Count
field. This number is one by default. The Step Over button operates similarly, except that
when it encounters a subroutine call, it will execute a subroutine call as if it was just one

7

instruction and then proceed to the instruction immediately after the subroutine call, rather
than executing the subroutine itself one instruction at a time.

4.5 Setting Breakpoints
Single stepping is very useful for debugging a program that is not behaving as expected. But
it is not possible to single step a large program that requires thousands of instructions to be
executed. Another mechanism one can use is to set a breakpoint. When a breakpoint is set at
the address of an particular instruction, the program stops or breaks whenever the program
counter is set to next execute that instruction. If we know that an error is occurring within a
small group of instructions, we can set a breakpoint at the beginning of that group and then
single step to see exactly what is going wrong.

Click on the View Breakpoints button. A Breakpoints pop-up window appears. Enter 400B
into the small sub-window above the Add button. Now click the Add button. This adds 400B
as a breakpoint in your program. $400B is the address of the “suba #10” instruction. Return
to the main simulator window, set the PC to 4000 and click GO. This time the program runs
until it’s is ready to execute the instruction at $400B, It then halts with a pop-up window
indicating that a breakpoint has occurred. You can now view the content of the registers right
before the “suba” instruction is executed. To resume execution, click OK on the pop-up and
then click GO again on the main simulation window. The program continues, starting with
the breakpoint instruction until it reaches the normal end of the program.

4.6 Simulating microcontroller peripherals
The 68HC12 simulator is also capable of simulating some simple I/O features of the HCS12
microcontroller including the H, J and T ports, the Timer Counter module, one serial
communication channel SCI0 and one A/D converter ATD0. The serial communications
window can be enabled by clicking SCI Viewer on the View pull-down menu.

Note that the addresses of many of the I/O registers in the simulator are different from the
addresses found in the microprocessor on the lab EVB board. The addresses of I/O registers
in the simulator are given in the file equates.asm. To use the symbolic reference to any of
these I/O registers in your program simply insert the line “ #include equates.asm” at the
beginning of your assembler program.

A detailed description of I/O operations in the simulator is beyond the scope of this
document. Please refer to the simulator help and documentation pages for more information.

