EE 471: Transport Phenomena in Solid State Devices

HW 1

Due: 2/2/18

Please show all working (including equations you use to calculate your answers). All numerical answers should include units Calculate numerical answers to 3 sig. figs.

- 1. A silicon sample is 7 mm in length, 1.5 mm in width and 0.25 mm high. It has been doped with Boron with a doping density of 5.5×10^{16} cm⁻³. Assume the temperature is 300° K.
 - a. Is the sample N-type or P-type? (2 points)
 - b. What is the majority carrier type? (2 points)
 - c. What is the majority carrier density assuming complete ionization? (2 points)
 - d. What is the minority carrier density? (3 points)
 - e. Where is the Fermi level? (3 points)
 - f. What is the total number of holes you would find in the sample? (3 points)
- 2. The same sample is now counter-doped with Arsenic at a density of $9.0 \times 10^{16} \text{ cm}^{-3}$.
 - a. Is the sample now N-type or P-type? (2 points)
 - b. What is the majority carrier type? (2 points)
 - c. What is the majority carrier density assuming complete ionization? (2 points)
 - d. What is the minority carrier density? (3 points)
 - e. Where is the Fermi level? (3 points)
 - f. What is the total number of holes you would find in the sample? (3 points)
- 3. At 300°K, N_c and N_v in <u>gallium arsenide</u> are 4.7 x 10^{17} and 7.0 x 10^{18} cm⁻³ respectively and vary as T^{3/2}. The bandgap in gallium arsenide is 1.42 eV.
 - a. Calculate the intrinsic carrier concentration in gallium arsenide at 300° K. (4 *points*)
 - b. What is the value of the thermal energy (kT) in *eV* at 250°K ? (3 points)
 - c. What are the values of N_c and N_v for gallium arsenide at 250°K? (4 points)
 - d. Calculate the intrinsic carrier concentration in gallium arsenide at 250°K. (*4 points*) (Assume the bandgap is independent of temperature)