EE 471: Transport Phenomena in Solid State Devices

HW5

Due: 3/27/18

Please show all working (including equations you use to calculate your answers). All numerical answers should include units Calculate numerical answers to 3 sig. figs.

- 1. A silicon MOS capacitor is built by placing an N⁺ poly gate over a P-type substrate with $N_A = 5 \times 10^{16} \text{ cm}^{-3}$ and a gate oxide thickness of 15 *nm*. Calculate:
 - a) Gate oxide capacitance (per unit area) (2 points)
 - b) Flatband voltage (3 points)
 - c) Threshold voltage (4 points)
 - d) Accumulation charge (per unit area) at $V_g = -2V$ and $V_g = +2V$ (4 points)
 - e) Depletion charge (per unit area) at $V_q = -2V$ and $V_q = +2V$ (5 points)
 - f) Inversion charge (per unit area) at $V_g = -2V$ and $V_g = +2V$ (4 points)
 - g) What is the voltage across the oxide at $V_a = +2V$ (3 points)
 - h) Suppose the doping density in the N⁺ poly gate is $2 \times 10^{19} \text{ cm}^{-3}$. Assuming the V_{ox} value you calculate in part (g), determine the width of the small depletion region that forms in the poly gate at the poly-oxide interface. How does this (quantitatively) change the effective oxide thickness? (4 points extra credit)